

Natural Computing Series
Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink
Leiden Center for Natural Computing

Advisory Board: S. Amari G. Brassard K.A. De Jong
C.C.A.M. Gielen T. Head L. Kari L. Landweber T. Martinetz
Z. Michalewicz M.C. Mozer E. Oja G. Păun J. Reif H. Rubin
A. Salomaa M. Schoenauer H.-P. Schwefel C. Torras
D. Whitley E. Winfree J.M. Zurada

Thomas Bartz-Beielstein

Experimental Research
in Evolutionary Computation
The New Experimentalism

With 66 Figures and 36 Tables

123

Author

Thomas Bartz-Beielstein
Chair of Algorithm Engineering
and Systems Analysis
Department of Computer Science
University of Dortmund
Otto-Hahn-Str. 14
44227 Dortmund, Germany
thomas.bartz-beielstein@udo.edu

Series Editors

G. Rozenberg (Managing Editor)
rozenber@liacs.nl

Th. Bäck, J.N. Kok, H.P. Spaink
Leiden Center for Natural Computing
Leiden University
Niels Bohrweg 1
2333 CA Leiden, The Netherlands

A.E. Eiben
Vrije Universiteit Amsterdam
The Netherlands

Library of Congress Control Number: 2006922082

ACM Computing Classification (1998): F.1, F.2, G.1.6, G.3, G.4, I.2.8, I.6, J.2

ISSN 1619-7127
ISBN-10 3-540-32026-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-32026-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright
Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Cover Design: KünkelLopka, Werbeagentur, Heidelberg
Typesetting: by the Author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 45/3100/YL 5 4 3 2 1 0

To Eva, Leon, Benna, and Zimba

Foreword

Rigorously proven upper and lower run-time bounds for simplified evolution-
ary algorithms on artificial optimization problems on the one hand and endless
tables of benchmark results for real-world algorithms on today’s or yester-
day’s hardware on the other, is that all one can do to justify their invention,
existence, or even spreading use? Thomas Bartz-Beielstein gives thoughtful
answers to such questions that have bothered him since he joined the team of
researchers at the Chair of Systems Analysis within the Department of Com-
puter Science at the University of Dortmund. He brings together recent results
from statistics, epistemology of experimentation, and evolutionary computa-
tion.

After a long period in which experimentation has been discredited in evo-
lutionary computation, it is regaining importance. This book far exceeds a
discussion of often-met points of criticism of the usual experimental approach
like missing standards, different measures, and inaccurate and irreproducible
results. Also, fundamental objections against the experimental approach are
discussed and cleared up. This work shows ways and means to close the gap
between theoretical and experimental approaches in algorithm engineering. It
becomes clear that statistical tests are the beginning and not the end of exper-
imental analyses. Vital in this context is the differentiation between statisti-
cally relevant and scientifically meaningful results, which is clearly developed
by Thomas Bartz-Beielstein.

The results of this book—especially the sequential parameter optimization
developed in Chap. 7—can directly be applied. They have been used in the
evolutionary optimization of algorithmic chemistries, in chemical engineering,
machining technology, electrical engineering, and for other real-world prob-
lems such as the optimization of elevator group controllers.

The impact of the author’s insights goes beyond the field of computer
science. The techniques presented are also of great interest for designing pro-
cedures in numerical mathematics.

I would like to call this book a first innovative attempt—I do not know any
other—to create a theory of trying. Impressive is the wide epistemological arc

VIII Foreword

the author draws from the philosophy of science over the behavioral sciences
to numerical mathematics and computer science to legitimate a method that
is commonly applied by optimization practitioners. He lays a solid base for
scientific experimentation in computer science and proposes a course of action
that is reliable as far as possible.

However, experiments require a lot of work, so the reader may be warned:
Performing a good experiment is as demanding as proving a new theorem.

Dortmund, November 2005 Hans-Paul Schwefel

Preface

Before we go into medias res, I would like to acknowledge the support of many
people who made this book possible.

First and foremost, I would like to thank Hans-Paul Schwefel, the head of
the Chair of Systems Analysis, for providing a cooperative and stimulating
work atmosphere. His thoughtful guidance and constant support in my re-
search were very valuable and encouraging. This book is based on my disser-
tation “New Experimentalism Applied to Evolutionary Computation” (Bartz-
Beielstein 2005b). I am thankful to Peter Buchholz for his kindness in being
my second advisor, and I would like thank Ingo Wegener for valuable discus-
sions.

Thomas Bäck supported my scientific research for many years, beginning
when I was a student and working at the Chair of Systems Analysis and dur-
ing the time I did work for NuTech Solutions. He also established the contact
to Sandor Markon, which resulted in an inspiring collaboration devoted to
questions related to elevator group control and the concept of threshold selec-
tion. Sandor Markon also provided guidance in Korea and Japan, which made
my time there very enjoyable.

I greatly appreciated the discussions with Dirk Arnold relating to threshold
selection. They built the cornerstone for a productive research that is devoted
to selection and decision making under uncertainty.

The first official presentation of the ideas from this book during the CEC
tutorial on experimental research in evolutionary computation in 2004 was
based on the collaboration and the helpful discussions with Mike Preuß. Tom
English’s support during the preparation and presentation of this tutorial
were very comforting. I also very much enjoyed the constructive exchange of
information with the people from the evolutionary computation “task force,”
Steffen Christensen, Gwenn Volkert, and Mark Wineberg. Many thanks go to
Jürgen Branke for inspiring discussions about experimental approaches and
to Burkhard Hehenkamp and Thomas Stützle for their comments on early
versions of this work.

X Preface

My colleagues Boris Naujoks, Karlheinz Schmitt, and Christian Lasarczyk
shared their knowledge and resources, helped in many discussions to clarify
my ideas, and made the joint work a very fortunate experience. Konstantinos
E. Parsopoulos and Michael N. Vrahatis aroused my interest in particle swarm
optimization. Discussions with students, especially with Christian Feist, Mar-
cel de Vegt, and Daniel Blum, have been a valuable source of inspiration
during this research.

This book would not have been completed without the help from Ronan
Nugent, who supported the editorial process.

Additional material (exercises, solutions to selected exercises, program
sources) is available under the following link:
http://www.springer.com/3-540-32026-1

Dortmund, November 2005 Thomas Bartz-Beielstein

Contents

Part I Basics

1 Research in Evolutionary Computation . 3
1.1 Research Problems . 3
1.2 Background . 4

1.2.1 Effective Approaches . 5
1.2.2 Meta-Algorithms . 6
1.2.3 Academic Approaches . 6
1.2.4 Approaches with Different Goals . 7

1.3 Common Grounds: Optimization Runs Treated as Experiments 8
1.3.1 Wind Tunnels . 9
1.3.2 The New Experimentalism. 10

1.4 Overview of the Remaining Chapters . 10

2 The New Experimentalism . 13
2.1 Demonstrating and Understanding . 13

2.1.1 Why Do We Need Experiments in Computer Science? . . 14
2.1.2 Important Research Questions . 17

2.2 Experimental Algorithmics . 17
2.2.1 Preexperimental Planning . 17
2.2.2 Guidelines from Experimental Algorithmics 18

2.3 Observational Data and Noise . 19
2.4 Models . 20
2.5 The New Experimentalism . 21

2.5.1 Mayo’s Models of Statistical Testing 23
2.5.2 Neyman–Pearson Philosophy . 23
2.5.3 The Objectivity of NPT: Problems and

Misunderstandings . 26
2.5.4 The Objectivity of NPT: Defense and Understanding . . 27
2.5.5 Related Approaches . 35

2.6 Popper and the New Experimentalists . 36

XII Contents

2.7 Summary . 38
2.8 Further Reading . 39

3 Statistics for Computer Experiments . 41
3.1 Hypothesis Testing . 42

3.1.1 The Two-Sample z-Test . 42
3.1.2 The Two-Sample t-Test . 43
3.1.3 The Paired t-Test . 44

3.2 Monte Carlo Simulations . 45
3.3 DOE: Standard Definitions . 48
3.4 The Analysis of Variance . 48
3.5 Linear Regression Models . 49
3.6 Graphical Tools . 51

3.6.1 Half-Normal Plots . 51
3.6.2 Design Plots . 51
3.6.3 Interaction Plots . 51
3.6.4 Box Plots . 53
3.6.5 Scatter Plots . 53
3.6.6 Trellis Plots . 54

3.7 Tree-Based Methods . 55
3.8 Design and Analysis of Computer Experiments 59

3.8.1 The Stochastic Process Model . 59
3.8.2 Regression Models . 59
3.8.3 Correlation Models . 60
3.8.4 Effects and Interactions in the Stochastic Process Model 61

3.9 Comparison . 62
3.10 Summary . 63
3.11 Further Reading . 64

4 Optimization Problems . 65
4.1 Problems Related to Test Suites . 66
4.2 Test Functions . 67

4.2.1 Test Function for Schwefel’s Scenario 1 and 2 67
4.2.2 Test Functions for Schwefel’s Scenario 2 67
4.2.3 Test Function for Schwefel’s Scenario 3 69

4.3 Elevator Group Control . 69
4.3.1 The Elevator Supervisory Group Controller Problem . . . 69
4.3.2 A Simplified Elevator Group Control Model: The S-Ring 72
4.3.3 The S-Ring Model as a Test Generator 75

4.4 Randomly Generated Test Problems . 76
4.5 Recommendations . 77
4.6 Summary . 77
4.7 Further Reading . 77

Contents XIII

5 Designs for Computer Experiments . 79
5.1 Computer Experiments . 80
5.2 Classical Algorithm Designs . 81
5.3 Modern Algorithm Designs . 84
5.4 Sequential Algorithm Designs . 86
5.5 Problem Designs . 87

5.5.1 Initialization . 87
5.5.2 Termination . 89

5.6 Discussion: Designs for Computer Experiments 90
5.6.1 Problems Related to Classical Designs 90
5.6.2 Problems Related to Modern Designs 90

5.7 Recommendations . 90
5.8 Summary . 91
5.9 Further Reading . 92

6 Search Algorithms . 93
6.1 Deterministic Optimization Algorithms . 93

6.1.1 Nelder and Mead . 93
6.1.2 Variable Metric . 94

6.2 Stochastic Search Algorithms . 95
6.2.1 The Two-Membered Evolution Strategy 95
6.2.2 Multimembered Evolution Strategies 96
6.2.3 Particle Swarm Optimization . 98

6.3 Summary . 100
6.4 Further Reading . 101

Part II Results and Perspectives

7 Comparison . 105
7.1 The Fiction of Optimization . 106
7.2 Performance Measures . 108

7.2.1 Scenarios . 109
7.2.2 Effectivity or Robustness . 110
7.2.3 Efficiency . 111
7.2.4 How to Determine the Maximum Number of Iterations . 118

7.3 The Classical DOE Approach . 119
7.3.1 A Three-Stage Approach . 119
7.3.2 Tuning an Evolution Strategy . 120

7.4 Design and Analysis of Computer Experiments 125
7.5 Sequential Parameter Optimization . 126
7.6 Experimental Results . 129

7.6.1 Optimizing the PSO Inertia Weight Variant 129
7.6.2 Optimizing the PSO Constriction Factor Variant 135
7.6.3 Comparing Particle Swarm Variants 138

XIV Contents

7.6.4 Optimizing the Nelder–Mead Simplex Algorithm and
a Quasi-Newton Method . 138

7.7 Experimental Results for the S-Ring Model 139
7.8 Criteria for Comparing Algorithms . 141
7.9 Summary . 142
7.10 Further Reading . 143

8 Understanding Performance . 145
8.1 Selection Under Uncertainty . 145

8.1.1 A Survey of Different Selection Schemes 146
8.1.2 Indifference Zone Approaches . 147
8.1.3 Subset Selection . 148
8.1.4 Threshold Selection . 150
8.1.5 Sequential Selection . 153

8.2 Case Study I: How to Implement the (1 + 1)-ES 153
8.2.1 The Problem Design Sphere I . 155

8.3 Case Study II: The Effect of Thresholding 163
8.3.1 Local Performance . 163

8.4 Bounded Rationality . 171
8.5 Summary . 173
8.6 Further Reading . 173

9 Summary and Outlook . 175
9.1 The New Experimentalists . 175
9.2 Learning from Error . 176
9.3 Theory and Experiment . 179
9.4 Outlook . 181

References . 185

Index . 203

Nomenclature . 211

Part I

Basics

1

Research in Evolutionary Computation

This work tries to lay the groundwork for experimental research in evolution-
ary computation. We claim that experiments are necessary—a purely theo-
retical approach cannot be seen as a reasonable alternative. Our approach is
related to the discipline of experimental algorithmics, which provides methods
to improve the quality of experimental research. However, many approaches
from experimental algorithmics are based on Popperian paradigms:

1. No experiment without theory.
2. Theories should be falsifiable.

Following Hacking (1983) and Mayo (1996), we argue that:

1∗. An experiment can have a life of its own.
2∗. Falsifiability should be complemented with verifiability.

This concept, known as the new experimentalism, is an influential discipline
in the modern philosophy of science. It provides a statistical methodology to
learn from experiments. For a correct interpretation of experimental results,
it is crucial to distinguish the statistical significance of an experimental result
from its scientific meaning. This work attempts to introduce the concept of
the new experimentalism in evolutionary computation.

1.1 Research Problems

At present, it is intensely discussed which type of experimental research
methodologies should be used to improve the acceptance and quality of evolu-
tionary algorithms (EA). A broad spectrum of presentation techniques makes
new results in evolutionary computation (EC) almost incomparable. Sentences
like “This experiment was repeated ten times to obtain significant results” or
“We have proven that algorithm A is better than algorithm B” can still be
found in current EC publications. Eiben & Jelasity (2002) explicitly list four
problems:

4 1 Research in Evolutionary Computation

Problem 1.1. The lack of standardized test-functions, or benchmark prob-
lems.

Problem 1.2. The usage of different performance measures.

Problem 1.3. The impreciseness of results, and therefore no clearly specified
conclusions.

Problem 1.4. The lack of reproducibility of experiments.

These problems provide guidelines for our analysis and will be reconsidered in
Chap. 9. In fact, there is a gap between theory and experiment in evolution-
ary computation. How to promote good standards and quality of research in
the field of evolutionary computation was discussed during the Genetic and
Evolutionary Computation Conference (GECCO) in 2002. Bentley noted:

Computer science is dominated by the need to publish, publish, pub-
lish, but sometimes this can happen at the expense of research. All
too often poor papers, clumsy presentations, bad reviews or even bad
science can clutter a conference, causing distractions from the more
carefully prepared work (Bentley 2002).

There is a great demand for these topics, as one can see from the interest
in tutorials devoted to these questions during two major conferences in evo-
lutionary computation, the Congress on Evolutionary Computation (CEC)
and GECCO (Bartz-Beielstein et al. 2003d; Wineberg & Christensen 2004;
Bartz-Beielstein & Preuß 2004, 2005a, b).

1.2 Background

Evolutionary computation shares these problems with other scientific disci-
plines such as simulation, artificial intelligence, numerical analysis, or indus-
trial optimization (Dolan & More 2002). Cohen’s survey of 150 publications
from the proceedings of the Eighth National Conference on Artificial Intelli-
gence, which was organized by the American Association for Artificial Intel-
ligence, “gave no evidence that the work they described has been tried out on
more than a single example problem” (Cohen et al. 2000). He clearly demon-
strated that there is no essential synergy between experiment and theory in
these papers.

Cohen (1995) not only reported these negative results, he also provided
valuable examples for how empirical research can be related to theory. Solu-
tions from other disciplines that have been applied successfully for many years
might be transferable to evolutionary computation. We have chosen four cri-
teria to classify existing experimental research methodologies that have a lot
in common with our approach. First, we can mention effective approaches.

1.2 Background 5

They find a solution but are not very efficient and are not focused on un-
derstanding. Greedy, or brute-force approaches belong to this group. Second,
meta-algorithms can be mentioned. They might locate good parameter sets,
though without providing much insight into how sensitive performance is to
parameter changes. Third, approaches that model problems of mostly aca-
demic interest can be listed. These approaches consider artificial test func-
tions or infinite population sizes. Finally, the fourth category comprehends
approaches that might be applicable to our problems although they have been
developed with a different goal. Methods for deterministic computer experi-
ments can be mentioned here. We will give a brief overview of literature on
experimental approaches from these four domains.

1.2.1 Effective Approaches

The methodology presented in this book has its origins in statistical design
of experiments (DOE). But classical DOE techniques as used in agricultural
or industrial optimization must be adapted if applied to optimization mod-
els since stochastic optimization uses pseudorandom numbers (Fisher 1935).
Randomness is replaced by pseudorandomness. For example, blocking and ran-
domization, which are important techniques to reduce the systematic influence
of different experimental conditions, are unnecessary in computer-based op-
timization. The random number seed is the only random element during the
optimization run.

Classical DOE techniques are commonly used in simulation studies—a
whole chapter in a broadly cited textbook on simulation describes experimen-
tal designs (Law & Kelton 2000). Kleijnen (1987, 1997) demonstrated how to
apply DOE in simulation. As simulation is related to optimization (simula-
tion models equipped with an objective function define a related optimization
problem), we suggest the use of DOE for the analysis of optimization problems
and algorithms (Kelton 2000).

This work is not the first attempt to use classical DOE methods in EC.
However, our approach takes the underlying problem instance into account.
Therefore, we do not try to draw any problem-independent conclusions such
as: “The optimal mutation rate in genetic algorithms is 0.1.” In addition, we
propose an approach that is applicable if a small amount of function evalua-
tions are available only. Schaffer et al. (1989) proposed a complete factorial
design experiment that required 8400 run configurations; each configuration
was run to 10,000 fitness function evaluations. Feldt & Nordin (2000) use sta-
tistical techniques for designing and analyzing experiments to evaluate the
individual and combined effects of genetic programming parameters. Three
binary classification problems are investigated in a total of 7 experiments
consisting of 1108 runs of a machine code genetic programming system. My-
ers & Hancock (2001) present an empirical modeling of genetic algorithms.
This approach requires 129,600 program runs. François & Lavergne (2001)
demonstrate the applicability of generalized linear models (GLMs) to design

6 1 Research in Evolutionary Computation

evolutionary algorithms. Again, data sets of size 1000 or even more are nec-
essary, although a simplified evolutionary algorithm with 2 parameters only
is designed.

As we include methods from computational statistics, our approach can
be seen as an extension of these classical approaches. Furthermore, classical
DOE approaches rely strongly on hypothesis testing. The reconsideration of
the framework of statistical hypothesis testing is an important aspect in our
approach.

1.2.2 Meta-Algorithms

The search for useful parameter settings of algorithms itself is an optimization
problem. Optimization algorithms, so called meta-algorithms, can be defined
to accomplish this task. Meta-algorithms for evolutionary algorithms have
been proposed by many authors (Bäck 1996; Kursawe 1999). But this ap-
proach does not solve the original problem completely, because it requires the
determination of a parameter setting of the meta-algorithm.

Additionally, we argue that the experimenter’s skill plays an important
role in this analysis. It cannot be replaced by automatic rules. The difference
between automatic rules and learning tools is an important topic discussed in
the remainder of this book.

1.2.3 Academic Approaches

Experimental algorithmics offer methodologies for the design, implementa-
tion, and performance analysis of computer programs for solving algorithmic
problems (Demetrescu & Italiano 2000; Moret 2002). McGeoch (1986) exam-
ined the application of experimental, statistical, and data analysis tools to
problems in algorithm analysis. Barr & Hickman (1993) and Hooker (1996)
tackled the question how to design computational experiments and how to
test heuristics. Aho et al. (1997) tried “to achieve a greater synergy between
theory and practice.”

Most of these studies were focused on algorithms, and not on programs .
Algorithms can be analyzed on a sheet of paper, whereas the analysis of pro-
grams requires real hardware. The latter analysis includes the influence of
rounding errors or limited memory capacities. We will use both terms simul-
taneously, because whether we refer to the algorithm or the program will be
clear from the context.

Compared to these goals, our aim is to provide methods for very complex
real-world problems, when only a few optimization runs are possible, i.e.,
optimization via simulation. The elevator supervisory group controller study
discussed in Beielstein et al. (2003a) required more than a full week of round-
the-clock computing in a batch job processing system to test 80 configurations.

Our methods are applied to real computer programs and not to abstract
algorithms. A central topic in complexity theory is to answer the question NP

1.2 Background 7

�= P. It is assumed that the class of problems that can be solved nondeter-
ministically in polynomial time (NP) is different from the class of problems
that can be solved in polynomial time (P). Problems in NP are—in contrast
to problems in P—considered difficult and not efficiently solvable. However,
analyses from complexity theory are not sufficient for some problems (Weihe
et al. 1999). Many simple problems belong to NP. Niedermeier (2003) develops
a recent approach to overcome this “dilemma of NP-hardness.” Furthermore,
there is an interesting link between programs (experimental approach) and
algorithms (complexity theory) as discussed in Example 1.1.

Example 1.1 (Hooker 1994). Consider a small subset of very special trav-
eling salesperson problems (TSP) T . This subset is NP-complete, and any
class of problems in NP that contains T is ipso facto NP-complete. Consider
the class P ′ that consists of all problems in P and T . As P ′ contains all easy
problems in the world, it seems odd to say that problems in P ′ are hard. But
P ′ is no less NP-complete than TSP. Why do we state that TSP is hard?
Hooker (1994) suggests that “we regard TSP as a hard class because we in
fact find problems in TSP to be hard in practice.” We acknowledge that TSP
contains many easy problems, but we are able to generate larger and larger
problems that become more and more difficult. Hooker suggests that it is this
empirical fact that justifies our saying that TSP contains characteristically
hard problems. And, in contrast to P ′, TSP is a natural problem class, or as
philosophers of science would say, a natural kind. �

1.2.4 Approaches with Different Goals

Although our methodology has its origin in DOE, classical DOE techniques
used in agricultural and industrial simulation and optimization tackle different
problems and have different goals.

Parameter control deals with parameter values (endogenous strategy pa-
rameters) that are changed during the optimization run (Eiben et al. 1999).
This differs from our approach, which is based on parameter values that are
specified before the run is performed (exogenous strategy parameters). The
assumption that specific problems require specific EA parameter settings is
common to both approaches.

Design and analysis of computer experiments (DACE) as introduced
in Sacks et al. (1989) models the deterministic output of a computer experi-
ment as the realization of a stochastic process. The DACE approach focuses
entirely on the correlation structure of the errors and makes simplistic assump-
tions about the regressors. It describes “how the function behaves,” whereas
regression as used in classical DOE describes “what the function is” (Jones
et al. 1998, p. 14). DACE requires other experimental designs than classical
DOE, e.g., Latin hypercube designs (McKay et al. 1979). We will discuss dif-
ferences and similarities of these designs and present a methodology for how
DACE can be applied to stochastic optimization algorithms.

8 1 Research in Evolutionary Computation

Despite the differences mentioned above, it might be beneficial to adapt
some of these well-established ideas from other fields of research to improve
the acceptance and quality of evolutionary algorithms.

1.3 Common Grounds: Optimization Runs Treated as
Experiments

Gregory et al. (1996) performed an interesting study of dynamic scheduling
that demonstrates how synergetic effects between experiment and theory can
evolve. Johnson et al. (1989, 1991) are seminal studies of simulated annealing.
Rardin & Uzsoy (2001) presented a tutorial that discusses the experimental
evaluation of heuristic search algorithms when the complexities of the prob-
lem do not allow exact solutions. Their tutorial described how to design test
instances, how to measure performance, and how to analyze and present the
experimental results. They demonstrated pitfalls of commonly used measures
such as the algorithm-to-optimal ratio, that measures how close an algorithm
comes to producing an optimal solution.

Birattari et al. (2002) developed a “racing algorithm” for configuring meta-
heuristics that combines blocking designs, nonparametric hypothesis testing,
and Monte Carlo methods. The aim of their work was “to define an auto-
matic hands-off procedure for finding a good configuration through statistical
guided experimental evaluations.” This is unlike the approach presented here,
which provides means for understanding algorithms’ performance (we will use
datascopes similar to microscopes in biology and telescopes in astronomy).
However, Chiarandini et al. (2003) demonstrate that racing can be used in-
teractively and not only as a monolithic block. These studies—although based
on classical DOE techniques only—are closely related to our approach.

Optimization runs will be treated as experiments. In our approach, an
experiment consists of a problem, an environment, an objective function, an
algorithm, a quality criterion, and an initial experimental design. We will use
methods from computational statistics to improve, compare, and understand
algorithms’ performances. The focus in this work lies on natural problem
classes: Its elements are problems that are based on real-world optimization
problems in contrast to artificial problem classes (Eiben & Jelasity 2002).
Hence, the approach presented here might be interesting for optimization prac-
titioners who are confronted with a complex real-world optimization problem
in a situation where only few preliminary investigations are possible to find
good parameter settings.

Furthermore, the methodology presented in this book is applicable a pri-
ori to tune different parameter settings of two algorithms to provide a fair
comparison. Additionally, these methods can be used in other contexts to im-
prove the optimization runs. They are applicable to generate systematically
feasible starting points that are better than randomly generated initial points,
or to guide the optimization process to promising regions of the search space.

1.3 Common Grounds: Optimization Runs Treated as Experiments 9

Meta-model assisted search strategies as proposed in Emmerich et al. (2002)
can be mentioned in this context. Jin (2003) gives a survey of approximation
methods in EC.

Before introducing our understanding of experimental research in EC, we
may ask about the importance of experiments in other scientific disciplines.
For example, the role of experiments in economics changed radically during
recent decades.

1.3.1 Wind Tunnels

The path-breaking work of Vernon L. Smith (2002 Nobel Prize in Economics
together with Daniel Kahneman) in experimental economics provided criteria
to find out whether economic theories hold up in reality. Smith demonstrated
that a few relatively uninformed people can create an efficient market. This
result did not square with theory. Economic theory claimed that one needed
a horde of “perfectly informed economic agents.” He reasoned that economic
theories could be tested in an experimental setting: an economic wind tunnel.
Smith had a difficult time getting the corresponding article published (Smith
1962). Nowadays this article is regarded as the landmark publication in ex-
perimental economics.

Today, many cases of economic engineering are of this sort. Guala (2003)
reports that before “being exported to the real world” the auctions for mo-
bile phones were designed and tested in the economic laboratory at Caltech.
This course of action suggests that experiments in economics serve the same
function that a wind tunnel does in aeronautical engineering. But, the rela-
tionship between the object of experimentation and the experimental tool is of
importance: How much reductionism is necessary to use a tool for an object?
Table 1.1 lists some combinations. Obviously some combinations fit very well,
whereas others make no sense at all.

Table 1.1. Relationship between experimental objects and experimental tools. Some
combinations, for example, reality–computer, require some kind of reductionism.
Others, for example, algorithm–wind tunnel, are useless

Object of experimentation Experimental tool

Reality Computer
Reality Thought experiment
Reality Wind tunnel
Airplane Computer
Airplane Thought experiment
Airplane Wind tunnel
Algorithm Computer
Algorithm Thought experiment
Algorithm Wind tunnel

10 1 Research in Evolutionary Computation

We propose an experimental approach to analyze algorithms that is suit-
able to discover important parameters and to detect superfluous features. But
before we can draw conclusions from experiments, we have to take care that
the experimental results are correct. We have to provide means to control the
error, because we cannot ensure that our results are always sound. Therefore
the concept of the new experimentalism is regarded next.

1.3.2 The New Experimentalism

The new experimentalism is an influential trend in recent philosophy of science
that provides statistical methods to set up experiments, to test algorithms,
and to learn from the resulting errors and successes. The new experimentalists
are seeking a relatively secure basis for science, not in theory or observation
but in experiment. To get the apparatus working for simulation studies is an
active task. Sometimes the recognition of an oddity leads to new knowledge.
Important representatives of the new experimentalism are Hacking (1983),
Galison (1987), Gooding et al. (1989), Mayo (1996), and Franklin (2003).
Deborah Mayo, whose work is in the epistemology of science and the philoso-
phy of statistical inference, proposes a detailed way in which scientific claims
are validated by experiment. A scientific claim can only be said to be sup-
ported by experiment if it passes a severe test. A claim would be unlikely
to pass a severe test if it were false. Mayo developed methods to set up ex-
periments that enable the experimenter, who has a detailed knowledge of the
effects at work, to learn from error.

1.4 Overview of the Remaining Chapters

The first part of this book (Chaps. 1 to 6) develops a solid statistical method-
ology, which we consider to be essential in performing computer experiments.
The second part, which is entitled “Results and Perspectives” (Chaps. 7 and 8)
describes applications of this methodology.

New concepts for an objective interpretation of experimental results are
introduced. Each of the following seven chapters closes with a summary of the
key points. The concept of the new experimentalism for computer experiments
and central elements of an understanding of science are discussed in Chap. 2. It
details the difference between demonstrating and understanding, and between
significant and meaningful. To incorporate these differences, separate models
are defined: models of hypotheses, models of experimental tests, and models
of data. This leads to a reinterpretation of the Neyman–Pearson theory of
testing (NPT). Since hypothesis testing can be interpreted objectively, tests
can be considered as learning tools. Analyzing the frequency relation between
the acceptance (and the rejection) of the null hypothesis and the difference in
means enables the experimenter to learn from errors. This concept of learning

1.4 Overview of the Remaining Chapters 11

tools provides means to extend Popper’s widely accepted claim that theories
should be falsifiable.

Statistical definitions for Monte Carlo methods, classical design and anal-
ysis of experiments, tree-based regression methods, and modern design and
analysis of computer experiments techniques are given in Chap. 3. A bootstrap
approach that enables the application of learning tools if the sampling distri-
bution is unknown is introduced. This chapter is rather technical, because it
summarizes the relevant mathematical formulas.

Computer experiments are conducted to improve and to understand the
algorithm’s performance. Chapter 4 presents optimization problems from evo-
lutionary computation that can be used to measure this performance. Be-
fore an elevator group control problem is introduced as a model of a typical
real-world optimization problem, some commonly used test functions are pre-
sented. Problems related to test suites are discussed as well.

Different approaches to set up experiments are discussed in Chap. 5. Clas-
sical and modern designs for computer experiments are introduced. A sequen-
tial design based on DACE that maximizes the expected improvement is
proposed.

Search algorithms are presented in Chap. 6. Classical search techniques, for
example, the Nelder–Mead “simplex” algorithm, are presented as are stochas-
tic search algorithms. The focus lies on particle swarm optimization algo-
rithms, which build a special class of bioinspired algorithms.

The discussion of the concept of optimization provides the foundation to
define performance measures for algorithms in Chap. 7. A suitable measure
reflects requirements of the optimization scenario or the experimental environ-
ment. The measures are categorized with respect to effectivity and efficiency.
Now, the necessary components according to the discussion in the previous
chapters to perform computer experiments are available: a problem, an en-
vironment, an objective function, an algorithm, a quality criterion, and an
experimental design. After summarizing a classical DOE approach of finding
better suited exogenous parameters (tuning), a sequential approach that com-
prehends methods from computational statistics is presented. To demonstrate
that our approach can be applied to any arbitrary optimization algorithm, sev-
eral variants of optimization algorithms are tuned. Tools from error statistics
are used to decide whether statistically significant results are scientifically
meaningful.

Chapter 8 closes the circle opened in Chap. 2 on the discussion of testing as
an automatic rule and as a learning tool. Provided with the background from
Chap. 2, the aim of Chap. 8 is to propose a method to learn from computer
experiments and to understand how algorithms work. Various schemes for
selection under noise for direct search algorithms are presented. Threshold
selection is related to hypothesis testing. It serves as an example to clarify the
difference between tests as rules of inductive behavior and tests as learning
tools. A summary and an outlook conclude this book in Chap. 9.

12 1 Research in Evolutionary Computation

Introducing the new experimentalism in evolutionary computation pro-
vides tools for the experimenter to understand algorithms and their interac-
tions with optimization problems. Experimentation is understood as a means
for testing hypotheses, the experimenter can learn from error and control the
consequences of his decisions. The methodology presented here is based on the
statistical methods most widely used by today’s practicing scientists. It might
be able “to offer genuine hope for a recovery of some of the solid intuitions of
the past about the objectivity of science”(Ackermann 1989).

2

The New Experimentalism

The physicist George Darwin used to say that every once
in a while one should do a completely crazy experiment,
like blowing the trumpet to the tulips every morning for a
month. Probably nothing would happen, but what if it did?

—Ian Hacking

In this chapter we discuss the role of experiments in evolutionary computa-
tion. First, problems related to experiments are presented. Objections stated
by theoreticians, for example, “Algorithms are formal objects and should be
treated formally,” are discussed. After considering these objections, we present
an experimental approach in evolutionary computation. Important goals for
scientific research in evolutionary computation are proposed. Experimental
algorithmics is an influential discipline that provides widely accepted meth-
ods to tackle these scientific goals. It is based on a Popperian understanding
of science. After introducing the concept of models in science, the new exper-
imentalism is presented. It goes beyond Popper’s concept that only results
that are falsifiable should be treated as scientific. The new experimentalists
claim that the experimenter can learn from experiments. Mayo introduced
an approach based on the Neyman–Pearson theory of statistical testing that
enables the experimenter to perform experiments in an objective manner. It
is important to note that statistically significant results are not automatically
meaningful. Therefore some space must be left between the statistical result
and its scientific import. Finally, the relationship between theory and practice
is reconsidered.

2.1 The Gap Between Demonstrating and
Understanding

We first start with a comparison of two parameterizations of a stochastic
global optimization method. This comparison is based on real optimization
data, but it is kept as simple as possible for didactical purposes.

Example 2.1 (PSO swarm size). Analyzing a particle swarm optimiza-
tion algorithm (PSO), we are interested in testing whether or not the swarm
size has a significant influence on the performance of the algorithm. The 10-
dimensional Rosenbrock function was chosen as a test function. Based on the

14 2 The New Experimentalism

parameterization in Shi & Eberhart (1999), the swarm sizes were set to 20
and 40. The corresponding settings will be referred to as run PSO(20) and
PSO(40), respectively. The question is whether the increased swarm size im-
proves the performance of the PSO. As in Shi & Eberhart (1999), a random
sample is drawn from each of the two populations. The average performance
y1 of n = 50 runs of PSO(20) is 108.02, whereas the average performance y2

of n = 50 runs of PSO(40) is 56.29. The same number of function evaluations
was used in both settings. The number of runs n is referred to as the sample
size, and y denotes the sample mean. �

Example 2.1 demonstrates at first sight, that the hypothesis (H)

(H-2.1) PSO(40) outperforms PSO(20)

is correct. But can we really be sure that (H-2.1) is true? Is this result statis-
tically significant? Are the influences of other parameters on the algorithm’s
performance negligible? Are 50 repeats sufficient? How does the run length,
that is, the number of iterations, influence the result? However, even if we
assume that (H-2.1) is correct, what can we learn from this conclusion?

As will be demonstrated later on and as some readers already know,
choosing a suitable parameterization enables the experimenter to demonstrate
anything—algorithm A is better than algorithm B, or the other way round.
The remainder of this book deals with questions related to these problems
and provides a methodology to perform comparisons in a statistically sound
manner.

2.1.1 Why Do We Need Experiments in Computer Science?

It is a difficult task to set up experiments correctly. Experimental results may
be misleading. So one may ask why to perform computer experiments at all.

There are theoretical and empirical approaches to study the performance
of algorithms. In contrast to some researchers who consider merely the former
as scientific, many practitioners are convinced that the theoretical approach
alone is not well-suited to judge an algorithm’s performance.

Why is the empirical work viewed as unscientific? One reason might be
the lack of standards for empirical methods. Empirical work is sometimes
considered as “lowbrow or unsophisticated”(Hooker 1994). Additionally, the
irreproducibility of the results discredits empirical approaches (Eiben & Jela-
sity 2002). But these are problems that can be mastered, at least in principle.
The main objection against empirical work lies deeper. Hooker hits the nail
on the head with the following characterization: The main objection against
empirical work is comparable to the uneasiness that arises when “verifying
that opposite interior angles are equal by measuring them with a protrac-
tor”(Hooker 1994). This can be formulated as:

Statement 2.1. Algorithms are defined as formal systems and should be
studied with formal methods.

2.1 Demonstrating and Understanding 15

Reasoning that many founders of modern science like Galilei, Descartes, Leib-
niz, or Newton studied formal systems with empirical methods does not give
a completely satisfactory response to this objection. After discussing the role
of models in science, we will reconsider this objection and give a well-founded
answer that uses some fundamental concepts from the philosophy of science.
However, even under the assumption that Statement 2.1 is true, studying
formal systems is not as trivial as it might appear at first sight. Severe ob-
jections arise when Statement 2.1 is considered in detail. The construction of
a self-explanatory formal system requires a huge complexity. These systems
cannot be applied in real-life situations (Mertens 1990). This may be one rea-
son for the failure of the enthusiastically propagated set-theoretical approach
to mathematics in primary schools in the 1960s. Nowadays it is widely ac-
cepted that the Peano axioms do not provide a suitable context to introduce
the system of whole numbers for primary schools (Athen & Bruhn 1980).

But not only its complexity makes the formal approach difficult. As State-
ment 2.1 cannot be proven, it is rather subjective. It is obvious that:

1. Algorithms treated as formal systems require some kind of reductionism.
2. Reductionism works in some cases, but fails in others.

Based on our subjective experience as experimenters, we can claim that:

Statement 2.2. Reductionism often fails in algorithmic science.

Hooker gives an example that emphasizes the importance of the right level of
reductionism or abstraction that provides an understanding of the underlying
phenomena: Investigating the behavior of algorithms with formal methods is
like applying quantum physics to geology to understand plate tectonics. Even
if one can in principle deduce what the algorithms are going to do, we would
not understand why they behave as they do (Hooker 1994). As will be seen
in the following, the concept of model plays a central role in tackling these
problems.

Comparing mathematical models and experiments, the following state-
ments are true:

1. Results from mathematical models are more certain than results from
experiments.

2. Results from mathematical models are less certain than results from ex-
periments.

As the conclusions must follow from the premises, mathematical models are
more certain. This justifies the first statement. However, as these premises
are more hypothetical and arbitrary, the conclusions are less certain. This
confirms the second statement. Both mathematical models and experiments
deliver only hypotheses. Or, as stated by Einstein: “As far as the laws of
mathematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality” (Newman 1956).

16 2 The New Experimentalism

Summarizing, one can claim that a solely theoretically oriented approach
is not completely satisfactory. We would like to mention a few more reasons
why experiments are useful:

• Theories may be incomplete; they may have holes. Consider the Nelder–
Mead simplex algorithm (Nelder & Mead 1965), one of the most popular
methods for nonlinear unconstrained optimization. “At present there is no
function in any dimension greater than 1 for which the original Nelder–
Mead algorithm has been proved to converge to a minimizer” (Lagarias
et al. 1998).

• Observations and experiments may suggest new theories. Existing theories
can be tested and refined by experiments. The 2004 NASA gravity probe
B mission can be mentioned here. Gravity probe B is an experiment being
developed by NASA and Stanford University to test two extraordinary,
unverified predictions of Einstein’s general theory of relativity.

• Experiments can bridge the gap between theory and practice: Experiences
from the collaborative research center “Design and Management of Com-
plex Technical Processes and Systems by Means of Computational Intelli-
gence Methods” in Dortmund show that the engineer’s view of complexity
differs from the theoretician’s view (Schwefel et al. 2003).

• Digital computers use a finite number of decimal places to store data.
To check theoretically derived convergence results, computer experiments
that consider rounding errors, have to be performed (Schwefel 1995).

• Worst case �= average case: As worst-case scenarios can theoretically be
analyzed more easily than average-case scenarios, many theoretical results
are related to the former. But the real world is “mostly” an average-case
scenario (Briest et al. 2004).

• To obtain average-case results, it is necessary to define a probability dis-
tribution over randomly generated problem instances. But, this distribu-
tion is “typically unreflective of reality” (Hooker 1994). Real-world op-
timization problems are not totally random; they possess some kind of
structure. To model this structure, Kan (1976) introduced job-correlated
processing times for scheduling problems. As a consequence, theoretical
lower-bound calculations that perform very well for randomly generated
problem instances provide “an extremely poor bound on job-correlated
problems” (Whitley et al. 2002). We will come back to this problem in
Chap. 4.

• And last, but not least: What is c in O(n) + c?

Many theoreticians would accept the point of view that experiments are
useful—at least when they support theories.

If experiments are elements of science—this point has not been clarified
yet—an experimental methodology to deal with important research questions
is needed. Over ten years ago, Hooker (1994), coming from the operations
research community, postulated to “build an empirical science of algorithms.”
The key ingredients of his empirical science are statistical methods and empir-

2.2 Experimental Algorithmics 17

ically based theories that can be submitted to rigorous testing. We claim that
the time is ripe to transfer these ideas to the field of evolutionary algorithms.
First, we will ask, “What is the role of science?” Or, to be more concrete,
“Which are important research topics especially in evolutionary computa-
tion?”

2.1.2 Important Research Questions

We claim that important elements of research in evolutionary computation
comprise tasks like:

Goal 2.1 (Discovery). Specifying optimization problems and analyzing al-
gorithms. Which are important parameters; what should be optimized; what
happens if new operators are implemented?

Goal 2.2 (Comparison). Comparing the performance of competing search
heuristics such as evolutionary algorithms, simulated annealing, and particle
swarm optimization, etc.

Goal 2.3 (Conjecture). It might be good to demonstrate performance, but
it is better to explain performance. Understanding and further research, based
on statistics and visualization techniques, play important roles.

Goal 2.4 (Quality). Improving the robustness of the results obtained in op-
timization or simulation runs. Robustness includes insensitivity to exogenous
factors that can affect the algorithms’ performance and minimization of the
variability around the solutions obtained (Montgomery 2001).

These four research goals (RG) are also discussed in the discipline of ex-
perimental algorithmics. As this discipline has gained much attention in re-
cent years, we will present this approach to establish experiments as scientific
means first. (Pre)experimental planning is of importance in experimental al-
gorithmics.

2.2 Experimental Algorithmics

2.2.1 Preexperimental Planning

Preexperimental planning has a long tradition in other scientific disciplines.
For instance, Coleman & Montgomery (1993) present a checklist for the pre-
experimental planning phases of an industrial experiment. It covers the fol-
lowing topics: objectives of the experiment, a performance measure, relevant
background on response and control variables, a list of response variables and
control variables, a list of factors to be “held constant”, known interactions,
proposed analysis techniques, etc. The differences between analytical and em-
pirical studies are discussed in Anderson (1997). Good empirical work must

18 2 The New Experimentalism

pass the following tests: “It must be both convincing and interesting” (An-
derson 1997). Moret (2002) gives a suitable characterization of “interesting”:
“Always look beyond the obvious measures!” In this context, we recommend
including factors that should have no effect on the response, such as the ran-
dom seed in the model. This is one example for “blowing the trumpet to the
tulips.”

2.2.2 Guidelines from Experimental Algorithmics

As we have classified important parameters of the algorithm to be analyzed,
and have defined a measure for its performance, we can conduct experiments
to assess the significance of single parameters such as population size or se-
lective pressure. Optimization runs are treated as experiments. We begin by
formulating a hypothesis, then we set up experiments to gather data that
either verify or falsify this hypothesis. Guidelines (GL) from experimental al-
gorithmics to set up and to perform experiments read as follows (Moret 2002):

Guideline 2.1 (Question). State a clear set of objectives. Formulate a ques-
tion or a hypothesis. Typical questions or hypotheses read: “Is the selective
pressure ν = 5 a good choice for the optimization problem under considera-
tion?”, or “PSO works better when the swarm size is ten times the dimension
of the search space compared to a parameterization that uses a fixed swarm
size.”

Guideline 2.2 (Data collection). After an experimental design is selected,
simply gather data.

Guideline 2.3 (No peeking). Do not modify the hypothesis until all data
have been collected. This guideline is also known in the philosophy of statistics
as the no peeking rule.

Guideline 2.4 (Analysis). Analyze the data to test the hypothesis stated
above.

Guideline 2.5 (Next Cycle). In the next cycle of experimentation a new
hypothesis can be tested, i.e. “ν = 5 is a good choice, because. . .”

This procedure complies with Popper’s position that “knowledge results when
we accept statements describing experience that contradict and hence refute
our hypotheses; thus a deductive rather than an inductive relation holds be-
tween theoretical knowledge and experience. Experience teaches us by cor-
recting our errors. Only hypotheses falsifiable by experience should count as
scientific” (Jarvie 1998). Or, as Sanders introduces the related discipline of
algorithm engineering: “Algorithm engineering views design, analysis, imple-
mentation, and experimental analysis of algorithms as an integrated process in
the tradition of Popper’s scientific method” (Sanders 2004). Figure 2.1 depicts

2.3 Observational Data and Noise 19

Fig. 2.1. A first approach to model
the relationship between theory and
practice. Practice can benefit from
theory, and vice versa. Demonstrating
good results is only the first step in the
scientific process, whereas nature’s re-
ality can be seen as the judge of a sci-
entific theory (Bartz-Beielstein 2003)

a commonly accepted view on the relationship between theory and experiment.
This position is nowadays broadly accepted in the computer science commu-
nity. However, it is intensely discussed in the philosophy of science. Results
from these discussions have a direct impact on the experimental methodology
in evolutionary computation. Therefore we will present the fundamental ideas
in the following. After introducing the framework of the new experimentalists
in Sect. 2.5, Popper’s position will be reconsidered.

To introduce the concept of models as a central element of science, we
describe an inherent problem of nearly any real-world situation: noise.

2.3 Observational Data and Noise

Even if a scientific hypothesis or claim describes a phenomenon of investigation
correctly, observational data may not precisely agree with it. The accuracy
and precision of such data may be limited by measurement errors or inher-
ent fluctuations of the response quantity, for example turbulences. Another
source of distortion may lie in the inherent probabilistic nature of the scien-
tific hypotheses. Moreover, the observational data are discrete in contrast to
scientific hypotheses that may refer to continuous values (Mayo 1983).

Although computer programs are executed deterministically, evolutionary
computation has to cope with noise. Stochastic optimization uses pseudoran-
dom numbers. Randomness is replaced by pseudorandomness. As common or
antithetic seeds can be used, the optimization practitioner has much more
control over the noise in the experiments and can control the source of vari-
ability (Kleijnen 1997). The different optimization runs for one specific factor
combination can be performed under exactly the same conditions—at least
in principle: Even under exactly the same conditions different hardware can
produce unexpected results. To compare different run configurations under
similar conditions variance-reduction techniques (VRT) such as common ran-
dom numbers (CRN) and antithetic variates can be applied (Law & Kelton
2000).

Random error or noise can be classified as an unsystematic effect. System-
atic errors, for example the selection of a wrong regression model, are referred
to as bias . Santner et al. (2003) distinguish control variables, noise (or en-

20 2 The New Experimentalism

vironmental) variables, and model variables. Control variables can be set by
the experimenter to control the output (response) of an experiment, but noise
variables depend on the environment.

Statistical methods can be used to master problems caused by noise. They
require the specification of models. In the following section, the model concept
from mathematical logic is complemented with a model concept that defines
models as tools for representing and understanding the world.

2.4 Models

Models are central elements of an understanding of science. Giere (1999) con-
cludes that “models play a much larger role in science than even the most
ardent enthusiasts for models have typically claimed.” Perhaps the most in-
fluential paper that describes the meaning and use of models in mathematics
(especially in mathematical logic) and empirical sciences is Suppes (1969a).
Based on Tarski’s definition: “A possible realization in which all valid sen-
tences of a theory T are satisfied is called a model of T ” (Tarski 1953), Suppes
asserts “that the meaning of the concept of model is the same in mathematics
and the empirical science,” although the concept of model is used in a differ-
ent manner in these disciplines (Suppes 1969b). The concept of model used by
mathematical logicians is the basic and fundamental concept of model needed
for an exact statement of any branch of empirical science.

Logicians examine models that consist of abstract entities, e.g., geometri-
cal objects. Suppes’s proposition that there is no difference in the concept of
a model in empirical science and in mathematics is based on the considera-
tion that these objects could be physical objects. Or as David Hilbert stated
decades ago: “Man muss jederzeit anstelle von Punkten, Geraden und Ebenen
Tische, Stühle und Bierseidel sagen können.”1 (It has to be possible to say ta-
bles, chairs, and beer mugs instead of points, lines, and planes at any time.)
Suppes establishes a relationship between theories (sets of axioms) and mod-
els (sets of objects satisfying the axioms). A model provides an interpretation
of a set of uninterpretated axioms, called interpretative models.

By introducing error terms, model descriptions such as mathematical for-
mulas can be interpreted as hypotheses about real-world systems. Hypotheses
can be tested based on evidence obtained by examining real-world objects,
i.e., by performing experiments. Higher-level models are not compared di-
rectly with data, but with models of data that rank lower in the hierarchy of
models. In-between must be a model of experiments (Suppes 1969b). Giere
summarizes Suppes’ hierarchy of models as follows:

1 This famous quotation cannot be found in Hilbert’s publications. Walter Felscher
wrote: “I have looked through Hilbert’s articles on geometry, as well as through
those on the foundations of mathematics, but nowhere did I find formulations
mentioning Tische, Stuehle, Bierseidel. So the dictum seems indeed to be only
such, not a quotation documentable in Hilbert’s own publications”(Felscher 1998).

2.5 The New Experimentalism 21

1. theoretical principles
2. theoretical models
3. models of experiments
4. models of data
5. data

Theoretical models describe how a substantive inquiry can be divided into
local questions that can be probed. Experimental models are used to relate
questions to canonical questions about the particular type of experiment and
how to relate data to these experimental questions. Models of data describe
how raw data can be generated and modeled so as to put them into a canonical
form. In addition, they describe how to check if the data generation satisfies
assumptions of the experimental models.

Following Suppes and Hilbert, models consist of abstract entities that
could be in principle physical objects. But is this view of models adequate
for physical objects? Giere (1999) discusses maps, diagrams, and scale mod-
els (models of the solar system or model houses) as representational models.
He characterizes Suppes’s models as instantial in contrast to his understand-
ing, which is representational . Representational means that models are tools
for representing the world for specific purposes, and not primarily providing
means for interpreting formal systems. The representational view is related
to the systems analysis process that requires a discussion of the context in
which the need for a model arises before the subject of models and modeling
is introduced (Schmidt 1986).

From the instantial view of models there is a direct relationship between
linguistic expressions and objects. A circle can be defined as the set of points
that have a constant distance (radius) from one specific point. The mathe-
matical object “circle” can be linked to the linguistic expression without loss.
But physical objects that cannot be observed precisely, and cannot be defined
as exactly as theoretical objects, require a different conception.

Testing the fit of a model with the world, the model is compared with
another model of data. It is not compared to data. And, scientific reasoning
is “models almost all the way up and models almost all the way down” (Giere
1999). A significant use of models appears in mathematical statistics, where
models are used to analyze the relation between theory and experimental
data (Suppes 1969a). We will concentrate on the usage of models in mathe-
matical statistics. The following section presents models of statistical testing
in the framework of the new experimentalism.

2.5 The New Experimentalism

A naive description of the Popperian paradigm how scientific theories are
constructed is based on three assumptions (Chalmers 1999):

1. Generalizations are based on a huge number of observations.

22 2 The New Experimentalism

2. Observations have been repeated under a huge number of varying condi-
tions.

3. No statement violates commonly accepted principles.

The vagueness of the term “huge number” is not the only problem of this
approach. Sometimes, only a small number of observations is necessary to un-
derstand an effect: The destructive power of the atomic bomb has fortunately
been demonstrated only rarely in the last decades.

The second assumption requires additional knowledge to differentiate be-
tween significant and insignificant variations (the colors of the experimenter’s
socks should have no significant impact on the experimental outcome—ceteris
paribus conditions of an experiment are usually not incorporated in models).
This additional knowledge can be concluded from well-known facts. As these
well-known facts have to be justified and depend on the specification of further
additional knowledge, this leads to an infinite regress.

Popper demands that theories should be falsifiable. “Good” theories sur-
vive many attempts of falsification. However, it remains unclear whether it
is the theory or the additional assumptions, which are necessary to construct
the theory, that are responsible for its falsification. Also Popper does not pro-
vide positive characterizations that would allow the discovery of survivable
theories.

This is where the new experimentalism comes into play: The new experi-
mentalists are seeking a scientific method, not through observation (passive),
but through experimentation (active). They claim that experiments have neg-
ative and positive functionality. The experimenter can learn from mistakes
because he has some knowledge of their causes.

Experiments live a life of their own; they do not necessarily require com-
plex theories and are theory-neutral. Faraday’s electric motor is one famous
example to illustrate how experiments can be performed successfully and in-
dependently from high-level theories: “Faraday had no theory of what he had
found” (Hacking 1983, p. 211).

The new experimentalists are looking for scientific conclusions that can
be validated independently from complex abstract theories. Experiments can
verify and falsify assertions and identify formerly unknown effects. Experi-
mental results are treated as samples from the set of all possible results that
can be drawn from experiments of this type. Error statistics are used to assign
probabilities to sampling events. A theory is supported if predictions based
on this theory have been proven.

Science is seen as the growth of experimental knowledge. The new ex-
perimentalists provide substantial means that enable experimenters to derive
experimental knowledge independently from theory. One example how learn-
ing from experiments can be carried out will be detailed next.

2.5 The New Experimentalism 23

2.5.1 Mayo’s Models of Statistical Testing

Mayo (1996) attempts to capture the implications of the use of models in
mathematical statistics in a rigorous way. A statistically modeled inquiry con-
sists of three components (Mayo 1983), see Fig. 2.2:

(1) A scientific claim C can be modeled in terms of statistical hypotheses about
a population. Statistical models of hypotheses enable the translation of sci-
entific claims into claims about a certain population of objects. A random
variable Y with probability distribution P describes a quantity of interest.
Statistical hypotheses are hypotheses about the value of parameters of the
probability distribution P , e.g., the mean μ of Y . A probability model

M(μ) = {Pr(Y |μ), μ ∈ Ω} (2.1)

describes Y , where Ω denotes the parameter space.
(2) Experimental testing rules can be used to model the observational analysis

of the statistical hypotheses. The sample space Y is the set of possible
experimental results y = (y1, . . . , yn). Each yi is the realization of an
independent random variable Yi that is distributed according to M(μ).
The probability of an experimental result Pr(y|μ) can be determined.
Based on a test statistic T , a testing rule RU maps outcomes in Y to
various claims about the model of hypotheses M(μ):

RU : Y → M(μ). (2.2)

A statistical model of experimental tests ET (Y) is the triple

(Y, Pr(x|μ), RU).

(3) The actual observation O can be modeled in terms of a statistical sam-
ple from the population. A statistical model of data models an empirical
observation O as a particular element of Y. It includes various sample
properties of interest, for example, the mean.

As we will see in the following, it is crucial to leave some room between
statistical and scientifical conclusions. A statistically significant conclusion is
not automatically scientifically meaningful (Cohen 1995).

2.5.2 Neyman–Pearson Philosophy

The classical Neyman–Pearson theory of testing requires the determination of
the region of the parameter space Ω in the hypothesis model M(μ) that will
be associated with the null hypothesis H and the determination of the region
that will be associated with an alternative hypothesis J . Applications of the
NPT rules lead to a rejection of H and an acceptance of J , or vice versa.

Before the sample is observed, the experimental testing model ET (Y) spec-
ifies which of the outcomes in Y should be taken to reject H . These values

24 2 The New Experimentalism

Fig. 2.2. Models of statistical testing. Mayo (1983) develops a framework that per-
mits a delinearization of the complex steps from raw data to scientific hypotheses.
Primary questions arise when a substantive scientific question is broken down into
several local hypotheses. Experimental models link primary questions based on the
model of hypotheses to questions about the actual experiment. Data models describe
how raw data are transformed before. Not the raw data, but these modeled data are
passed to the experimental models. Mayo (1983) describes three major metastatisti-
cal tasks: “(1) relating the statistical hypotheses [. . .] and the results of testing them
to scientific claims; (2) specifying the components of experimental test [. . .]; and, (3)
ascertaining whether the assumptions of a model for the data of the experimental
test are met by the empirical observations [. . .]”

form the critical region (CR). A type-I error occurs if a true H is rejected,
a type-II error , when a false H is accepted, and α and β denote the corre-
sponding error probabilities. These error probabilities can be controlled by
specifying a test statistic T and a testing rule RU that defines which of the
possible values of T are mapped to the critical region. In general, a (test)
statistic is a function of the observed random variables obtained in a random
sample. It can be used as a point estimate for a population parameter, for
example, the mean, or as a test statistic in hypothesis testing. A testing rule
RU with Pr(T ∈ CR|μ ∈ ΩH) ≤ α and 1 − Pr(T ∈ CR|μ ∈ ΩJ) ≤ β can be
specified, because the probability that T ∈ CR can be determined under var-
ious values of μ. The event {RU rejects H} can be identified with {T ∈ CR}.
It follows

Pr(RU rejects H |H is true } = Pr(T ∈ CR |μ ∈ ΩH} ≤ α. (2.3)

Pr(RU accepts H |J is true } = 1 − Pr(T ∈ CR |μ ∈ ΩJ} ≤ β. (2.4)

The simultaneous minimization of α and β is a conflicting goal. The two types
of error are inversely related to each other, and it is impossible to minimize

2.5 The New Experimentalism 25

both of them simultaneously without increasing the sample size. Usually, the
significance level α of a test is selected first. The significance level of a test
can also be referred to as the size. In a second step a test with a small β
value is chosen. The best NP test is the one that minimizes the probability
of type-II errors for all possible values of μ under the alternative J . NP tests
are objective, because they control the error probabilities independently from
the true value of μ.

It is fundamental to be aware of two different interpretations of statistical
tests. In a similar manner as Cox and Hinkley distinguish “the theory of
statistical methods for the interpretation of scientific and technological data”
and statistical decision theory, “where statistical data are used for more or less
mechanical decision making”(Cox & Hinkley 1974), Mayo describes statistical
tests (ST) as rules of inductive behavior and learning tools.

(ST-2.1) Statistical tests as rules of inductive behavior. Statistical tests can
be interpreted as rules of inductive behavior and provide an automatic
rule for testing hypotheses (Mayo 1996, p. 368). “To accept a hypothesis
H means only to decide to take action A rather than action B”(Neyman
1950, p. 258). These behavioristic models of tests and the related automa-
tisms are adequate means “when circumstances force us to make a choice
between two courses of action”(Neyman 1950, p. 258). Automatic test
rules play an important role for selection procedures of search algorithms
under uncertainty, for example, the threshold selection scheme for direct
search algorithms introduced in Chap. 8.

(ST-2.2) Statistical tests as learning tools. Mayo (1983) reformulates the Ney-
man–Pearson theory of testing and argues that it provides an objective
theory of statistics. The control of error probabilities provides means to
evaluate what has been learned from the results of a statistical test. Mayo
describes tests as learning tools: “A test teaches about a specific aspect
of the process that produces the data” (Mayo 1996, p.382).

It might be useful to present an example that uses simplified assumptions,
e.g., common known variances, to explain the objective theory of statistical
testing.

Example 2.2 (PSO swarm-size). In Example 2.1 a random sample was
drawn from each of the two populations to determine whether or not the
difference between the two population means is equal to δ. The two samples are
independent, and each population is assumed to be normally distributed with
common known standard deviation σ. The question is whether the increased
swarm size improves the performance of the PSO. This can be formulated as
the scientific claim C1:

PSO(40) has a better (smaller) mean best fitness value than PSO(20).

(A) Statistical hypothesis. The model M(δ) is in the class of normal distri-
bution, that is, it is supposed that the standard deviation σ is known

26 2 The New Experimentalism

(σ = 160) and that the variability of Y i, the mean best fitness value
from n experiments, can be modeled by a normal distribution, i = 1, 2. If
PSO(40) does not improve the performance, the difference δ between the
two population means μ1 and μ2 would be zero. On the other hand, if C1

is true, δ will be greater than zero. The hypotheses read:

Null hypothesis H : δ = 0 in N (δ, σ2). (2.5)

Alternative hypothesis J : δ > 0 in N (δ, σ2).

(B) Specifying the components of an experimental testing model (ET1). The
vector yi = (yi1, . . . , yin) represents n observations from the ith configu-
ration, and yi denotes the ith sample mean, i = 1, 2. The experimental
test statistic is T = Y 12 = Y 1 − Y 2, and its distribution under H is
N (0, 2σ2/n). The upper α percentage point of the normal distribution is
denoted as zα, for example, z0.05 = 1.64, or z0.01 = 2.33. As the number
of observations was set to n = 50, it follows that the value of the standard
error is σd = σy1−y2

= 160
√

2/50 = 32. The significance level of the test
was α = 0.01, thus zα = z0.01 = 2.33. So the test rule RU is

T : Reject H : δ = 0 if T = Y 1 − Y 2 ≥ 0 + zα · σd = 74.44.

(C) Sample data. The average performance y1 of n = 50 runs of PSO(20) is
108.02, whereas the average performance y2 of n = 50 runs of PSO(40) is
56.29. The difference d = y1−y2 is 51.73. Since this value does not exceed
74.44, RU does not reject H . �

Example 2.2 shows a typical application of the Neyman–Pearson theory of
testing. NPT has been under attack for many years. We will discuss important
objections against NPT in the following and present an approach (NPT∗)
developed by Mayo to avoid these difficulties.

2.5.3 The Objectivity of NPT: Problems and Misunderstandings

The specification of a significance level α or error of the first kind is a crucial
issue in statistical hypothesis testing. Hence, it is not surprising that attacks
on the objectivity of NPT start with denying the objectivity of the specifica-
tion of α. Why do many textbooks recommend a value of 5%?

Problem 2.1. “In no case can the appropriate significance level be deter-
mined in an objective manner” (Rubin 1971).

Significance tests are tests of a null hypothesis. The significance level is often
called the p-value. Another question that attacks the Neyman–Pearson theory
of statistical testing refers to the p-value.

Problem 2.2. In the context of a statistical test, does a given p-value convey
stronger evidence about the null hypothesis in a larger trial than in a smaller
trial, or vice versa? (Gregoire 2001).

2.5 The New Experimentalism 27

Prima facie, one would answer that the p-value in a larger trial conveys
stronger evidence. But the chance of detecting a difference increases as the
sample size grows.

Although whole books devoted to these questions have been written,
for example, The Significance Tests Controversy (Morrison & Henkel 1970),
this controversy has not been recognized outside the statistical community.
Gigerenzer states that there are no textbooks (written by and addressed to
nonstatisticians like psychologists) that explain differences in opinion about
the logic of inference: “Instead, readers are presented with an intellectually in-
coherent mix of Fisherian and Neyman–Pearsonian ideas, but a mix presented
as a seamless, uncontroversial whole: the logic of scientific inference” (Gigeren-
zer 2003). The following section discusses the definition of the p-value to clarify
these questions.

2.5.4 The Objectivity of NPT: Defense and Understanding

Significance and the p-Value

Sometimes scientists claim that their results are significant because of the
small p-value. The p-value is taken as an indicator that the null hypothesis is
true (or false). This is as wrong as claiming that the movement of the leaves
in the trees causes windstorms in autumn. The p-value is

p = Pr{ result from test-statistic, or greater | null model is true },
and not a measure of

p = Pr{ null model is true | test-statistic }.
Therefore, the p-value has “no information to impart about the verity of the
null model itself”(Gregoire 2001). The p-value is not related to any probability
whether the null hypothesis is true or false. J. Neyman and E.S. Pearson2

proposed a framework of acceptance and rejection of a statistical hypothesis
instead of a framework of significance. A significant result is a beginning, not
an end. “Eating beans and peas ‘significantly’ decreases the probability of
getting lung cancer. But why on Earth?”(Hacking 2001). The specification of
a p-value depends on the context in which the need for an experimental test
arises. Researchers can judge the possible consequences of a wrong decision.
Mayo comments on problem 2.1:

Answer (to Problem 2.1). The fact that the same data lead to different
conclusions depending on the specification of α is entirely appropriate when
such specifications are intended to reflect the researcher’s assessment of the
consequences of erroneous conclusions (Mayo 1983, p. 315).

2 Egon Pearson should not be confused with his father Karl, who proposed a dif-
ferent philosophy.

28 2 The New Experimentalism

The specifications, which are made in using NPT, are what allows tests to
avoid being sterile formal exercises.

The misconception is that NPT functions which test scientific claims di-
rectly, cf. arrow (1) in Fig. 2.2, and functions from which the statistical hy-
potheses are derived, arrow (2), are collapsed. This misconception can be
avoided if some room is left between the statistical and the scientific conclu-
sion.

How can statistical tests in a scientific inquiry provide “means of learning”?
Being able to use the distribution of the test statistic T , error probabilities
can be objectively controlled. This provides objective scientific knowledge. De-
tecting discrepancies between the correct and the hypothesized models enables
learning about phenomena, for example, “Is the actual value of δ positively
discrepant from the hypothesized value δ0?”

Severity

From the distribution of the experimental test statistic T it is known that it is
possible for an observed d to differ from a hypothesis δ0, when no discrepancy
exists (between δ, the true difference in means, and δ0), or vice versa. A
suitable choice of T enables the variation of the size of the observed differences,
in a known manner, with the size of the underlying discrepancies. A test can
be specified so that it will not very often classify an observed difference as
significant (and hence reject H) when no discrepancy of scientific importance
is detected, and not very often fail to do so (and so accept H) when δ is
importantly discrepant from δ0. This principle can be expressed in terms of
the severity requirement (SR). It leads to NPT∗, Mayos’s extension of NPT.

(SR) An experimental result e constitutes evidence in support of a hypothesis
H just to the extent that:
(SR-1) e fits H , and
(SR-2) H passes a severe test with e.

The requirement (SR-2) can be further specified by means of the severity
criterion: A hypothesis H passes a severe test T with outcome e just in case
the probability of H passing T with an outcome such as e (i.e., one that fits
H as well as e does), given H is false, is very low. Staley (2002) additionally
formulates a severity question (SQ) as follows: The severity question needs to
be addressed to determine whether a given experimental outcome e is evidence
for a given hypothesis H :

(SQ) How often would a result like this occur, assuming that the hypothesis
is false?

Note that the severity requirements are not related to the error of the sec-
ond kind (β error). Based on the severity requirements, we attempt to show
how NPT∗ can be used to objectively interpret statistical conclusions from
experimental tests.

2.5 The New Experimentalism 29

An Objective Interpretation of Rejecting a Hypothesis

The question “Are the differences real or due to the experimental error?” is
central for the following considerations. The metastatistical evaluation of the
test results tries to determine whether the scientific import is misconstrued.
A positive difference between the true and the observed value of less than
one or two standard deviation units is quite often caused by experimental
error. Thus, small differences may often erroneously be confused with effects
due to real differences. This problem can be tackled by selecting a small α
error, because only observed differences as large as zασd are taken to reject
H (Fig. 2.3). But choosing a small α value alone is not sufficient, because the

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

600

700

α

D
iff

er
en

ce

 n=1
 n=2
 n=10
 n=50

Fig. 2.3. Influence of the sample size n on the test result. Plot of the difference
zα ·σd versus α, with σ = 160. The arrows point out the influence of the sample size
for a given error of the first kind (α = 0.01) on the difference: If n = 1 the difference
d = Y 1 − Y 2 must exceed 526.39 to reject the null hypothesis. If more experiments
are performed (n = 50), this difference must exceed only the seventh part of this
value: 74.44. To demonstrate that there is no difference in means, experimenters
can reduce the sample size n. Otherwise, increasing the sample size n may lead to
a rejection of the null hypothesis

standard error σd depends on the sample size n. A misconstrual (MI) is a
wrong interpretation resulting from putting a wrong construction on words or
actions. Mayo (1983) describes the first misconstrual as follows:

(MI-2.1) A test can be specified that will almost give rise to an average dif-
ference d = y1 − y2 that exceeds δ0 by the required difference zασd, even
if the underlying δ exceeds δ0 by as little as one likes.

30 2 The New Experimentalism

This can be accomplished by selecting an appropriately large sample size n.
If one is allowed to go on sampling long enough (n → ∞), then even if the
null hypothesis H is true, one is assured of achieving a statistically significant
difference from H . The likelihood that we can detect a difference (power) in
the test increases.

Example 2.3 (Sample size). Consider Y1 ∼ N (100, 5) and Y2 ∼ N (110, 5).
Choosing a test with n = 50 will almost give rise to a Y 21 that exceeds δ0 by
the required difference. Note that we wish to reject H if one mean is larger
than the other. Therefore we are interested in the difference Y 21 = Y 2 − Y 1.
Next, consider Y1 ∼ N (100, 5) and Y3 ∼ N (100.1, 5). If the sample size is
increased, say n = 5000, a similar result can be obtained. �

In the following (Figs. 2.6–2.8), graphical tools to make these dependencies
understandable will be developed.

Summarizing, the product zασd can be modified by changing the sample
size n or the error α:

lim
α→0

zα = ∞. (2.6)

lim
n→∞

σd = 0. (2.7)

NPT allows misconstruals of the scientific import if a rejection of H is au-
tomatically taken to indicate that the scientific claim C is true. Even scien-
tifically unimportant differences are classified as important because the test
is too sensitive or powerful. When A and B are different treatments with as-
sociated means μA and μB, μA and μB are certain to differ in some decimal
place so that μA−μB = 0 is known in advance to be false (Cohen 1990; Tukey
1991).

The Observed Significance Level

The frequency relation between a rejection of the null hypothesis H and val-
ues of the difference in means, δ, is important for the interpretation of the
rejection. To interpret the rejection of H , Mayo introduces the observed sig-
nificance level

αd(δ) = α(d, δ) = Pr(Y1 − Y2 ≥ d|δ). (2.8)

Hence, αd(δ) is the area under the normal curve to the right of the observed

d, as illustrated in Fig. 2.4. If we set δ0 = 0, then αd(δ0) is the frequency of
an error of the first kind. If αd(δ0) ≤ “the preset significance level of the test

RU ,” then RU rejects H with d. Rejecting H with RU is a good indicator that
δ > δ0 to the extent that such a rejection is not typical when δ is as small as
δ0. If any and all positive discrepancies from δ0 are regarded as scientifically
important, then a small αd(δ) value ensures that construing such a rejection as
indicating a scientifically important δ does not occur very often. Small αd(δ)
values do not prevent an RU rejection of H from often being misconstrued

2.5 The New Experimentalism 31

0 10 20 30 40 50 60 70 80 90 100
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Difference

D
en

si
ty

δ=0
δ=30
δ=70x

Fig. 2.4. Observed difference and three hypothetical differences. Difference in means
for n = 50 samples and standard deviation σ = 160. The value from the test statistic
d = 51.73 remains fixed for varying means δi of different distributions associated
with the null hypotheses Hi, i = 1, 2, 3. The figure depicts the probability density
functions of the associated normal distributions for three different means: δ1 = 0,
δ2 = 30, and δ3 = 70. To interpret the results, consider a hypothetical difference in
means of δ2 = 30: The observed significance level αd(δ2) is the area under the normal
curve to the right of d. The value α51.75(30) = 0.25 is quite large and therefore not
a good indication that the true difference in means is as large as δ2 = 30

when relating it to the scientific claim C, if some δ values in excess of δ0 are
still not considered scientifically important.

Regard the values of αd(δ
′) for δ′ ∈ ΩJ . An RU rejection with d success-

fully indicates that δ > δ′ if αd(δ
′) is small. If αd(δ

′) is fairly large, then such
a rejection is the sort of event that fairly frequently occurs when δ ≤ δ′.

To relate the statistical result to the scientific import, Mayo proposes to
define δun:

δun = the largest scientifically unimportant value in excess of δ0. (2.9)

If αd(δun) is large, then the statistical result is not a good indication that the
scientific claim is true. In addition to δun, we can define δα, the inversion of
the observed significance level function as:

δα = the value of δ in Ω for which αd(δ) = α. (2.10)

Example 2.4. Consider a sample size of n = 50. If δun = 30, then rejecting H
with RU cannot be taken as an indication that the scientific claim “PSO(40)
outperforms PSO(20)” is true. The arrow in Fig. 2.5 illustrates this situation.
The observed significance level αd(30) = 0.25 is not a strong indication that δ

32 2 The New Experimentalism

exceeds 30. However, if the sample size is increased (n = 500), then αd(30) =
0.05 is small.

Consider Example 2.1 and an observed significance level α = 0.5. Then the
value of the inversion of the observed significance level function is δ0.5 = 51.73.
As δ0.027 = y−2σd = 31.49 (n = 500), hence an RU rejection is an indication
of δ > δ0.027. �

But are these results good indications that one is observing a difference δ > 0
that is also scientifically important? This problem is outside the domain of
statistics. Its answer requires the specification of a scientifically important
difference, a reasonable sample size, and an acceptable error of the first kind,
cf. statement 2.5.4. The αd(δ) function provides a nonsubjective tool for un-
derstanding the δ values, a metastatistical rule that enables learning on the
basis of a given RU rejection. As the examples demonstrate, NPT∗ tools en-
able the experimenter to control error probabilities in an objective manner.
The situation considered so far is depicted in Fig. 2.5.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l

n=10

n=50

n=500

α(30) = 0.25

Fig. 2.5. Plot of the observed significance level αd(δ) as a function of δ, the possible
true difference in means. Lower αd(δ) values support the assumption that there is a
difference as large as δ. The measured difference is d = 51.73, the standard deviation
is σ = 160, cf. Example 2.1. The arrow points to the associated value of area under
the normal curve to the right of the observed difference d, as shown in Fig. 2.4. Each
point of the three curves shown here represents one single curve from Fig. 2.4. The
values can be interpreted as follows: Regard n = 50. If the true difference is (a) 0,
(b) 51.73, or (c) 100, then (a) H : δ = 0, (b) H : δ = 51.73, or (c) H : δ = 100 is
wrongly rejected (a) 5%, (b) 50%, or (c) 95% of the time

2.5 The New Experimentalism 33

An Objective Interpretation of Accepting a Hypothesis

In a similar manner as rejecting H with a test that is too sensitive may
indicate scientifically important δ’s have been found, accepting a hypothesis
with a test that is too insensitive may fail to indicate that no important δ’s
have been found. This can be defined as the second misconstrual:

(MI-2.2) A test can be specified that will almost give rise to an average dif-
ference d that does not exceed δ0 by the required difference zασd, even if
the underlying δ exceeds δ0 by as much as one likes.

To interpret the acceptance of H with RU , Mayo defines

βd(δ) = β(d, δ) = Pr(Y1 − Y2 ≤ d|δ), (2.11)

and δβ as the value of δ in the parameter space Ω for which βd(δ) = β, and
finally

δim = the smallest scientifically important δ in excess of δ0. (2.12)

Learning

NPT∗ accomplishes the task of objectively interpreting statistical results. The
testing rule RU requires assumptions on the distribution of the underlying em-
pirical observations O. This is seen as part of task (3), depicted as arrow (3)
in Fig. 2.2. For example, one has to verify that the sample observation O can
be modeled as the result of n independent observations of a random variable
distributed according to the probability model M(δ). The assumption of in-
dependence can be checked using various goodness-of-fit tests. The learning
function of tests may be accomplished even if the test assumptions are not
satisfied precisely. Mayo claims that NPT methods are robust, and NPT∗

makes this robustness explicit.
To present a comprehensive example, we assumed a population that follows

a Gaussian distribution with known variance. Based on the bootstrap, which
will be detailed in Sect. 3.2, we are able to use our approach independently
from any assumptions on the underlying distribution.

Example 2.5 (Rejecting a hypothesis). Consider the situation depicted
in Fig. 2.6. The experimental test statistic T = Y1 − Y2 is based on samples
Y1 ∼ N (110, 5) and Y2 ∼ N (100, 5). The plot of the observed significance
(Fig. 2.6 on the left) indicates that one is observing a difference δ > 0, and
that this difference is not due to an increased sample size n alone. The values
from Table 2.1 reflect this assumption: The observed significance levels for 1
and 2 standard error units, αd(σd) and αd(2σd), are small. This case will be
referred to as RE-2.1 in the remainder of this book. �

34 2 The New Experimentalism

Example 2.6 (Accepting a hypothesis). The curves of the observed sig-
nificance level αd change their shape significantly if the true difference in
means is very small, i.e., if Y1 ∼ N (100.1, 5) and Y2 ∼ N (100, 5). Figure 2.7
depicts this situation. Only a large sample size, i.e., n = 5000, is able to detect
this difference; smaller sample sizes, i.e., n = 10, or n = 50, do not indicate a
difference in means. Note that in addition to the absolute αd values, the slope
(the rate of change) is of importance. Figure 2.7 gives no reason to reject the
null hypothesis. This case will be referred to as RE-2.2 in the remainder of
this work.

The corresponding plot that gives reason to accept the null hypothesis is
shown in Fig. 2.8. Consider a sample size of n = 5000: The corresponding
curve shows that we can safely state “there is no difference in means as large
as δ = 0.4.” Figure 2.8 (right) shows a similar situation with reduced noise
levels (Y1 ∼ N (100.1, 1) and Y2 ∼ N (100, 1)). Regarding n = 5000, we can
safely state that “there is no difference in means as large as δ = 0.2.” This
case will be referred to as AC-2.1 in the remainder of this work. �

80 90 100 110 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

μ

D
en

si
ty

μ=110

μ=100

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l

α

n=10

n=50

n=5000

Fig. 2.6. Case RE-2.1. Rejecting a hypothesis. Density and observed significance
level plots. Y1 ∼ N (110, 5), Y2 ∼ N (100, 5). This difference is meaningful and should
be detected. These cases correspond to the configurations R1–R3 from Table 2.1

Answer (to Problem 2.2). Plots of the observed significance level are non-
subjective tools for understanding the functional relationship between sample
size and p-value.

After discussing the objective interpretation of accepting or rejecting a
hypothesis, it is important to note that experiments consists of several tests.
We have described one basic procedure only. In general, the learning pro-
cess requires numerous statistical tests, and the problem is broken up into
smaller pieces. “One is led to break things down if one wants to learn” (Mayo
1997, p. 254). In contrast to the no peeking rule (GL-2.3) from experimental
algorithmics, Mayo allows peeking. Anyhow, experience shows that no exper-
imenter can obey the no peeking rule without exception.

2.5 The New Experimentalism 35

80 90 100 110 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

μ

D
en

si
ty

μ = 100

μ=100.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l

α

n=10

n=50

n=5000

Fig. 2.7. Case RE-2.2. Rejecting a hypothesis. Density and observed significance
level plots. Y1 ∼ N (100.1, 5), Y2 ∼ N (100, 5). This difference is not meaningful.
These cases correspond to the configurations R4–R6 from Table 2.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l β

n=10
n=50
n=5000

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l β

n=10

n=50

n=5000

Fig. 2.8. Case AC-2.1. Accepting a hypothesis. Observed significance level plots.
Left : Y1 ∼ N (100.1, 5), Y2 ∼ N (100, 5). The differences are probably not meaningful,
because only large sample sizes produce small p-values. Right : Y1 ∼ N (100.1, 1),
Y2 ∼ N (100, 1). These cases correspond to the configurations A1–A6 from Table 2.1

2.5.5 Related Approaches

Selvin (1970, p. 100) states that there is a difficulty in the interpretation
of “significance” and “level of significance.” The level of significance is the
probability of wrongly rejecting the null hypothesis that there is no difference
between two populations. The significance describes the scientific meaning of
this difference.

In addition to this, the observed significance level is closely related to
consonance intervals as introduced in Kempthorne & Folks (1971). Conso-
nance intervals can be regarded as an inversion of significance tests: We ask
for the degree of agreement of the parameters of a particular model with the
data (Folks 1981; Kempthorne & Folks 1971). Given the data, the parame-
ters of the model are evaluated. That is, observing 503 heads in 1000 coin

36 2 The New Experimentalism

Table 2.1. Rejection and acceptance of hypotheses. The sample size n, the standard
error σd, the observed difference d, the observed difference minus 1 and 2 σd’s, and
the values of the observed significance levels for 1 and 2 σd’s are shown

Conf. n σd d d − σd d − 2σd αd(σd) αd(2σd)

R1 10 1.99 9.58 7.59 5.60 0 0
R2 50 0.94 10.66 9.72 8.79 0 0
R3 5000 0.1 9.89 9.79 9.69 0 0
R4 10 1.57 2.99 1.41 −0.16 – –
R5 50 1.06 0.7 −0.36 −1.43 – –
R6 5000 0.1 0.18 0.08 −0.02 0.29 0.67

Conf. n σd d d + σd d + 2σd αd(σd) αd(2σd)

A1 10 1.57 2.99 4.56 6.13 – –
A2 50 1.06 0.7 1.76 2.83 – –
A3 5000 0.1 0.18 0.28 0.38 0.71 0.33
A4 10 0.31 0.68 0.99 1.31 0.15 0.46
A5 50 0.21 0.22 0.43 0.65 0.48 0.14
A6 5000 0.02 0.12 0.14 0.16 1 1

tosses, the model “heads and tails are equally probable” is consonant with
the observation.

2.6 Popper and the New Experimentalists

In a similar manner as Gigerenzer (2003) presents his tools to theories ap-
proach, Mayo suspects that Popper’s falsification theory is well accepted by
many scientists since it reflects the standard hypothesis testing principles of
their daily practice. To clarify the difference between Mayo’s NPT∗ approach
and Popperian testing, the reader may consider the following quotation:

Mere supporting instances are as a rule too cheap to be worth hav-
ing: they can always be had for the asking; thus they cannot carry any
weight; and any support capable of carrying weight can only rest upon
ingenious tests, undertaken with the aim of refuting our hypothesis,
if it can be refuted (Popper 1983).

Popper’s focus lies on the rejection of hypotheses; his concept of severity does
not include tools to support the acceptance of scientific hypotheses as intro-
duced in Sect. 2.5. Popper states that the theoretician will try to detect any
false theories; that is, he will “try to construct severe tests and crucial test
situations” (Popper 1979). But Popper does not present objective interpreta-
tions (as Mayo does) for accepting and rejecting hypotheses.

Mayo explicitly states that it is important to distinguish Popperian sever-
ity from hers. Also Popper stresses the importance of severe tests: Hypothesis
H passes a severe test with experimental result e if all alternatives to H

2.6 Popper and the New Experimentalists 37

that have been tested entail not-e. But there are many not-yet-considered or
not-yet-even-thought-of alternative hypotheses that also entail e. Why is this
alternative objection not relevant for NPT∗? Mayo comments:

Because for H to pass a severe test in my sense it must have passed
a severe test with high power at probing the ways H can err. And the
test that alternative hypothesis H ′ failed need not be probative in
the least so far as H ’s errors go. So long as two different hypotheses
can err in different ways, different tests are needed to probe them
severely (Mayo 1997, p. 251).

Hypothesis H has passed a severe test if the hypothesis itself has been tested.
It is not sufficient—as claimed in the Popperian paradigm—that all alternative
hypotheses to H failed and H was the only hypothesis that passed the test.

And What About Theory?

According to the new experimentalists, an experiment can have a life of its
own. An experiment is independent of large-scale theory. This is an obvious
contradiction to the Popperian view that theory precedes experiments and
that there is no experiment without theory. While discussing the relationship
between theory and experiment, Hacking comments on Popper’s statement:
“Theory dominates the experimental work from its initial planning to the
finishing touches in the laboratory” (Popper 1959) with a counterexample
that mentions Humphry Davy (1778–1829):

Davy’s noticing the bubble of air over the algae is one of these
[obvious counterexamples]. It was not an “interpretation in the light
of theory” for Davy had initially no theory. Nor was seeing the taper
flare an interpretation. Perhaps if he went on to say, “Ah, then it is
oxygen”, he would have been making an interpretation. He did not do
that (Hacking 1983).

We note additionally that a great many examples from the history of sci-
ence can be mentioned as counterexamples to the Popperian view that theory
dominates the experimental work. Davy experimented with gases by inhaling
them and thus invented the laughing gas, nitrous oxide, without any theory.
And, in opposition to existing theories, Davy showed that hydrochloric acid
did not contain oxygen. One last example from Davy: Ice cubes melt when
they are rubbed together—in contradiction to the caloric theory. Summariz-
ing the discussion about theory from this chapter, we conclude: Theory can
be described as wishful thinking. Moreover it is defined through consulting a
dictionary as:

1. The analysis of a set of facts in their relation to one another.
2. An abstract thought: speculation (Merriam-Webster Online Dictionary

2004).

38 2 The New Experimentalism

The latter definition is consonant with Hacking’s suggestion not to differen-
tiate only between theory and experiment, but to use a tripartite division
instead: speculation, calculation, and experimentation (Hacking 1996). We
will not enforce the gap between theory and practice any further, because we
sympathize with the idea of this tripartite division that will be reconsidered in
Chap. 9. The reader is also referred to Hacking’s Representing and Intervening
that details these ideas.

2.7 Summary

The results from this chapter can be summarized as follows:

1. The goal of this work is to lay the groundwork for experimental research
in evolutionary computation.

2. Solely theoretical approaches to investigate, compare, and understand al-
gorithms are not satisfactory from an experimenter’s point of view.

3. Algorithm runs can be treated as experiments.
4. Guidelines from experimental algorithmics provide good starting points

for experimental studies.
5. Experimental algorithmics is based on the Popperian paradigms:

(a) There is no experiment without high-level theories.
(b) Theories should be falsifiable.

6. We claim that:
(a) There are experiments without high-level theories (“experiment can

have a life of its own”).
(b) Popper’s falsification should be complemented with validation.

7. The concept of the new experimentalism is transferred from philosophy
to computer science, especially to evolutionary computation.

8. Models are central elements of an understanding of science.
9. Mayo introduced models of statistical testing that leave room between

scientific claims and statistical hypotheses.
10. Hypothesis testing can be applied as an automatic rule (NPT) or as a

learning tool (NPT∗).
11. The approach presented here enables learning from experiments. Learning

can be guided by plots of the observed significance against the difference,
as shown in Fig. 2.5.

Example 2.2 was based on the assumption of known variances and normally
distributed data. The following chapter introduces statistical tools that en-
able the application of NPT∗ methods even if the underlying distribution is
unknown.

2.8 Further Reading 39

2.8 Further Reading

The modern theory of statistical testing presented in this chapter is based
on Hacking (1983) and Mayo (1996). Morrison & Henkel (1970) discuss the
significance test controversy.

3

Statistics for Computer Experiments

Like dreams, statistics are a form of wish fulfillment.
—Jean Baudrillard

This chapter discusses some methods from classical and modern statistics. The
term “computational statistics” subsumes computationally intensive methods.
They comprise methods ranging from exploratory data analysis to Monte
Carlo methods. Data should be enabled to “tell their story”. Many methods
from computational statistics do not require any assumptions on the under-
lying distribution. Computer based simulations facilitate the development of
statistical theories: 50 out of 61 articles in the theory and methods section of
the Journal of the American Statistical Association in 2002 used Monte Carlo
simulations (Gentle et al. 2004a).

The accuracy and precision of data may be limited due to noise. How
can deterministic systems like computers model this randomness? Stochas-
tic computer experiments, as performed in evolutionary computation, have
to cope with a different concept of randomness than agricultural or indus-
trial experiments. The latter face inherent randomness, whereas the former
require methods to generate randomness. This is accomplished by generating
sequences of pseudorandom numbers.

A sequence of infinite length is random if the quantity of information it
contains is infinite too. If the sequence is finite, it is formally impossible to
verify whether it is random or not. This results in the concept of pseudo-
randomness: Statistical features of the sequence in question are tested, i.e.,
the equiprobability of all numbers (Knuth 1981; Schneier 1996). Following
this rather pragmatic approach, randomness and pseudorandomness will be
treated equivalently throughout the rest of this work.

First, some basic definitions from hypothesis testing are introduced. Next,
a bootstrap method to generate significance plots as shown in Fig. 2.5 is
described. It provides an effective method to use the raw data without making
any additional assumptions on the underlying distribution. The bootstrap
can solve problems that would be too complicated for classical statistical
techniques.

Then some useful tools for the analysis of computer experiments are pre-
sented. Common to all these methods is that they provide means to explain

42 3 Statistics for Computer Experiments

the variability in the data. Varying the exogenous strategy parameters of an
optimization algorithm may cause a change in its performance. Therefore we
will be able to find answers to the research goals RG 2.1–2.4.

Classical statistical methods such as the analysis of variance or regres-
sion analysis are common means to tackle these questions. These numerical
techniques should be complemented with graphical tools such as histograms,
box plots, or interaction plots, which belong to the standard repertoire of
many statistical software packages. In particular, regression trees that are
distribution-free methods to visualize structure in data have been proven use-
ful in this analysis. This chapter concludes with an introduction of the basic
definitions for DACE models, which can be seen as an extension of the clas-
sical approach from regression analysis.

A comprehensive introduction into statistical methods cannot be given
here. Instead this chapter focuses on the basic ideas.

3.1 Hypothesis Testing

The following subsections introduce the basic definitions used for statistical
hypothesis testing. Example 2.2 is reconsidered. Besides the three procedures
presented here, many more test procedures exist. These tests can be classified
according to known or unknown variances, equal or unequal sample sizes, and
equal or unequal variances (Montgomery 2001). The z-test is presented first,
because it was used in Example 2.2. In contrast to the z-test, where variances
have to be known, in the t-test estimates of the variances are computed.

3.1.1 The Two-Sample z-Test

In Example 2.2 the performances of two algorithms, PSO(20) and PSO(40),
respectively, were compared. The vector yi = (yi1, . . . , yini

) represents the ni

observations from the ith algorithm, yi denotes the ith sample mean, and σ2
i

the associated variances. The distribution of the difference in means Y 12 =
Y 1 − Y 2 is N (y1 − y2, σ

2(1/n1 + 1/n2)), if the samples were drawn from
independent normal distributions Ni(μi, σ

2
i) with common variance σ2 = σ2

i ,
i = 1, 2. If σ2 were known and

μ1 = μ2, (3.1)

then

Z0 =
y1 − y2

σ
√

1/n1 + 1/n2

∼ N (0, 1).

Equation (3.1) is a statement or a statistical hypothesis about the parameters
of a probability distribution, the null hypothesis: H : μ1 = μ2. The alternative
hypothesis can be defined as the statement J : μ1 �= μ2. The one-sided alterna-
tive hypothesis can be specified as J : μ1 > μ2. The procedure of formulating

3.1 Hypothesis Testing 43

a hypothesis H , taking a random sample, computing a test statistic, and the
acceptance of (or failure to accept) H is called hypothesis testing. The critical
region contains the values that lead to a rejection of H . The significance level
α is the probability of a type-I error for the test:

α = Pr(type-I error) = Pr(reject H |H is true). (3.2)

The type-II error is defined as

β = Pr(type-II error) = Pr(fail to reject H |H is false). (3.3)

To determine whether to reject the null hypothesis H : μ1 = μ2, the value
of the test statistic T : d = y1 − y2 is compared to the normal distribution. If

d ≥ zασ
√

1/n1 + 1/n2,

where zα is the upper α percentage point of the normal distribution, the null
hypothesis would not be accepted in the classical two-sample z-test . When
α = 0.01, then zα has the value 2.23. With n1 = n2 = n and σ = 160 follows
that zασ

√
1/n1 + 1/n2 = 2.23 · 160

√
2/50 = 74.44, as in Example 2.2.

The definition of the upper α percentage point of the normal distribu-
tion can be generalized to the case of more than one random variable. Let
(W1, . . . , Ws) have the s-variate normal distribution with mean vector zero,
unit variances, and common correlation ρ. Then

Pr

(
max
1≤i≤s

Wi ≤ Z(α)
s,ρ

)
= 1 − α (3.4)

defines the upper α equicoordinate critical point Z
(α)
s,ρ of this distribution (Bech-

hofer et al. 1995, p. 18).

3.1.2 The Two-Sample t-Test

If the variances of the populations are unknown, the sample variances

S2
i =

∑ni

k=1(yik − yi)
2

ni − 1

can be used to estimate σ2
i , i = 1, 2. The related test procedure is called the

two-sample t-test. The upper α percentage point of the normal distribution
is replaced by tα,n1+n2−2, the upper α percentage point of the t-distribution
with n1 + n2 − 2 degrees of freedom.

Let S2
p =

[
(n1 − 1)S2

1 + (n2 − 1)S2
2

]
/(n1 + n2 − 2), the pooled variance,

denote an estimate of the common variance σ2. Then

t0 =
y1 − y2

S2
p

√
1/n1 + 1/n2

. (3.5)

44 3 Statistics for Computer Experiments

If the null hypothesis H is true, t0 is distributed as tn1+n2−2, and 100(1− α)
percent of the values of t0 lie in the interval [−tα/2,n1+n2−2, tα/2,n1+n2−2],
where tα,n denotes the upper α percentage point of the t-distribution with n
degrees of freedom.

The t-distribution with n1+n2−2 degrees of freedom is called the relevance
distribution for the test statistic t0. To reject H only if one mean is larger
than the other (μ1 > μ2), the criterion

t0 > tα,n1+n2−2 (3.6)

is used. This is the one-sided t-test. Balanced samples are those in which the
candidates have an equal number of observations (n = n1 = n2). These will
be considered next.

3.1.3 The Paired t-Test

To compare different run configurations, CRN have been used in our experi-
ments. The reader is referred to Law & Kelton (2000) for a discussion of CRN

and related variance-reducing techniques. The jth paired difference

dj = y1j − y2j j = 1, . . . , n,

is used to define the test statistic

t0 =
d

Sd/
√

n
,

where d = 1
n

∑n
j=1 dj , and

Sd =

√√√√ n∑
j=1

(dj − d)2

n − 1
, (3.7)

is the sample standard deviation of the differences. Let

δ = μ1 − μ2

denote the difference in means. The null hypothesis H : μ1 = μ2, or equiva-
lently H : δ = 0, would be not accepted if t0 > tα,n−1. The paired t-test can
be advantageous compared to the two-sample t-test due to its noise reduction
properties. The confidence interval based on the paired test can be much nar-
rower than the corresponding interval from the two-sample test. The reader
is referred to the discussion in Montgomery (2001).

3.2 Monte Carlo Simulations 45

3.2 Monte Carlo Simulations

The statistical approach from Example 2.2 requires the following steps:

1. First, a sampling distribution for a statistic is derived.
2. Then the probability of a sample statistic is determined.

Many sampling distributions rely on statistical assumptions; consider, for ex-
ample, the assumption that samples are drawn from normal distributions like
for the t-distribution. Furthermore, classical techniques often apply asymp-
totic results under the assumption that the size of the available set of samples
is sufficiently large. Monte Carlo simulations can be applied for known popu-
lation distributions from which the samples are drawn and unknown sampling
distributions of the test statistic, for example, the trimmed mean or the in-
terquartile range.

As bootstrap methods treat the sample as the population, they can be ap-
plied if the sampling distribution is unknown (Efron & Tibshirani 1993). They
require a representative sample of the population. Nowadays the bootstrap is
considered a standard method in statistics (Mammen & Nandi 2004). It has
been successfully applied to solve problems that would be too complicated for
classical statistical techniques and in situations where the classical techniques
are not valid (Zoubir & Boashash 1998).

Bootstrap

The idea behind the bootstrap is similar to a method that is often applied in
practice. Experiments are repeated to improve the estimate of an unknown
parameter. If a representative sample is available, the bootstrap randomly
reassigns the observations and recomputes the estimate. The bootstrap is a
computationally intensive technique. Let θ̂ be the estimate of an unknown
parameter θ that has been determined by calculating a statistic T from the
sample:

θ̂ = T = t(y1, . . . , yn).

By sampling with replacement, nb bootstrap samples can be obtained. The
bootstrap replicates of θ̂

θ̂∗b = t(y∗b), b = 1, . . . , nb,

provide an estimate of the distribution of θ̂. The generic bootstrap procedure
is described in Fig. 3.1.

We describe the basic bootstrap procedure to determine the observed sig-
nificance level αd(δ). It can be applied to generate plots of the observed sig-
nificance, as shown in Fig. 2.5. Note that this procedure requires only two
paired and representative samples, y1 and y2.

Let y1 = (y11, . . . , y1n)T and y2 = (y21, . . . , y2n)T denote the random
samples, and d = y1 − y2 = (y11 − y21, . . . , y1n − y2n)T their difference vector.

46 3 Statistics for Computer Experiments

Algorithm: Generic Bootstrap

1. Calculate θ̂ from a representative sample y = (y1 . . . , yn).
2. To generate the bootstrap data sets y∗b = (y∗b

1 , . . . , y∗b
n) sample with re-

placement from the original sample.
3. Use the bootstrap sample y∗b to determine θ̂∗b.
4. Repeat steps 2 and 3 nb times.
5. Use this estimate of the distribution of θ̂ to obtain the desired parameter,

for example the mean.

Fig. 3.1. The generic bootstrap procedure

The procedure to obtain an estimate of the observed significance level αd(δ)
for a difference δ = d0 under the null hypothesis H can be implemented as in
the following example:

Example 3.1 (Bootstrap). Let y1 and y2 denote two vectors with represen-
tative samples from a population. If a ∈ R and the vector y = (y1, . . . , yn)T ∈
R

n, the scalar–vector addition is defined as

a + y = (y1 + a, . . . , yn + a)T .

The bootstrap approach to generate the plots of the observed significance
comprises the steps shown in Fig. 3.1. They can be detailed as follows:

1. Determine d = y1 − y2.
2. Determine d = 1/n

∑n
j=1(y1j − y2j).

3. Determine d0 = d − d.
4. Specify the lower bound dl and the upper bound du for the plot.
5. Specify m, the number of points to be plotted in the interval [dl, du].
6. For i = 1 to m do:

(a) Determine di = dl + i · (du − dl)/m + d0.
(b) Generate nb bootstrap sample sets d∗b

i , b = 1, . . . , nb from di.

(c) Determine the nb mean values d
∗b

i .

(d) Determine ni, that is, the number of times that d
∗b

i > d.
(e) Determine the ratio ri = ni/nb.

Finally, the m points (d
(i)
0 , r(i)) are plotted. The ratio ri corresponds to the

observed significance value αd(d
(i)
0). �

Histograms of the bootstrap replicates as shown in Fig. 3.2 are appropriate
tools for examining the distribution of θ̂. Figure 3.3 depicts the result based on
the bootstrap. It represents the same situation as shown in Fig. 2.5, without
making any assumption on the underlying distribution. As the sample size is
increased, i.e., from 50 to 500, the bootstrap and the true curve start to look

3.2 Monte Carlo Simulations 47

−50 0 50 100
0

20

40

60

80

100

Difference

x

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Difference

x

Fig. 3.2. Histograms of the bootstrap samples. Left : 50 repeats; right : 500 samples.
These figures show histograms of the bootstrap samples that were generated at
step 6 in Example 3.1. The difference di has the value 30. The dash-dotted curves
show the superimposed normal density. The area to the right of d = 51.73 under
the curve corresponds approximately with the observed significance level αd(δ), the
ratio ri

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference

S
ig

ni
fic

an
ce

 le
ve

l

n=10

n=50

n=500

r
i
(30)

Fig. 3.3. This figure depicts the same situation as shown in Fig. 2.5. But, unlike in
Fig. 2.5, no assumptions on the underlying distribution have been made. Samples of
size n = 10, 50, and 500, respectively, have been drawn from a normal distribution.
The bootstrap procedure described in Example 3.1 has been used to generate this
plot. The curves look qualitatively similar to the curves from Fig. 2.5. As the number
of samples increases, the differences between the exact and the bootstrap curves
becomes smaller. The measured difference is 51.73, σ = 160, cf. Example 2.1. Regard
n = 50: If the true difference is (a) 0, (b) 51.73, or (c) 100, then (a) H : δ = 0, (b)
H : δ = 51.73, or (c) H : δ = 100 is (approximately) wrongly rejected (a) 1%, (b)
50%, or (c) 99% of the time

48 3 Statistics for Computer Experiments

increasingly similar. The following sections present standard definitions from
classical and modern design and analysis of experiments, DOE and DACE,
respectively.

3.3 DOE: Standard Definitions

The classical design of experiments has a long tradition in statistics. It has
been developed for different areas of applications: agriculture (Fisher 1935),
industrial optimization (Box et al. 1978), and computer simulation (Kleijnen
1987). The following definitions are commonly used in DOE. The input pa-
rameters and structural assumptions to be varied during the experiment are
called factors or design variables. Other names frequently used are predic-
tor variables, input variables, regressors, or independent variables. The vector
of design variables is represented as x = (x1, . . . , xk)T . Different values of
parameters are called levels. The levels can be scaled to the range from −1
to +1. Levels can be qualitative, e.g., selection scheme, or quantitative, e.g.,
population size. The design space, the region of interest, or the experimental
region is the k-dimensional space defined by the lower and upper bounds of
each design variable. A sample or a design point is a specific instance of the
vector of design variables. An experimental design is a procedure for choosing
a set of factor level combinations. Kleijnen (2001) defines DOE as “the selec-
tion of combinations of factor levels that will be simulated in an experiment
with the simulation model.” One parameter design setting is run for different
pseudorandom number settings, resulting in replicated outputs. The output
value y is called response; other names frequently used are output variables
or dependent variables.

The intuitive definition of a main effect of a factor A is the change in the
response produced by the change in the level of A averaged over the levels of
the other factors. The average difference between the effect of A at the high
level of B and the effect of A at the low level of B is called the interaction
effect AB of factor A and factor B.

3.4 The Analysis of Variance

Following Montgomery (2001), we introduce one of the most useful principles
in inferential statistics, the (single) factor analysis of variance (ANOVA).
First, the dot subscript notation is defined: Consider m different treatments.
The sum of all observations under the ith treatment is

yi· =

n∑
j=1

yij .

Then, yi· = yi·/n, i = 1, 2, . . . , m, and

3.5 Linear Regression Models 49

y·· =
m∑

i=1

n∑
j=1

yij , y·· = y··/N,

where N = nm is the total number of observations. The total corrected sum
of squares

SST =

m∑
i=1

n∑
j=1

(yij − y··)
2, (3.8)

measures the total variability in the data. It can be partitioned into a sum
of squares of the difference between the treatment averages and the grand
average SSTREAT plus a sum of squares of the differences of observations
within treatments from the treatment average SSE:

m∑
i=1

n∑
j=1

(yij − y··)
2 = n

m∑
i=1

(yi· − y··)
2 +

m∑
i=1

n∑
j=1

(yij − yi·)
2. (3.9)

This fundamental ANOVA principle can be written symbolically as:

SST = SSTREAT + SSE. (3.10)

The term SSTREAT is called the sum of squares due to the treatments, and
SSE is called the sum of squares due to error.

3.5 Linear Regression Models

(Linear) regression models are central elements of the classical design of exper-
iments approach. In stochastic simulation and optimization, regression models
can be represented as follows:

y = f(z1, . . . , zd, r0), (3.11)

where f is a mathematical function, e.g., f : R
d+1 → R: Given the values

of the argument zi and at least one random number seed r0, the simulation
program or the optimization algorithm determine exactly one value. Least
square methods can be applied to estimate the linear model

y = Xβ + ε, (3.12)

where y denotes a column vector with the N responses, ε is the vector of
N error terms, and β denotes the vector with q parameters βj (N ≥ q).
Usually, the normality assumption (the error term ε is normal with expectation
E(ε) = 0 and variance V (ε) = σ2) is made. The regression matrix X is the
(N × q) matrix:

50 3 Statistics for Computer Experiments

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x11 x12 · · · x1,q−1

...
...

1 xi1 xi2 · · · xi,q−1

...
...

1 xN1 xN2 · · · xN,q−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.13)

Let 1 denote the vector of ones: 1 = (1, 1, . . . , 1)T . The variable x0 is the
dummy variable equal to 1, and the remaining q − 1 variables may corre-
spond to the simulation or optimization parameters zi. Let In denote the
n-dimensional identity matrix. Experimental settings (designs), where the re-
gression matrix X satisfies XT X = NIq, are called orthogonal. The ordinary
least squares estimator of the vector of regression parameters β in Eq. (3.12)
reads:

β̂ = (XT X)−1XT y (3.14)

with covariance
cov(β̂) = σ2(XT X)−1. (3.15)

An estimator α̂ is unbiased if E(α̂) = α. If the errors in Eq.(3.12) are in-

dependently and identically distributed, then β̂ is the best linear unbiased
estimator . An example how to apply regression models to analyze the perfor-
mance of evolutionary algorithms is given in Bartz-Beielstein (2003).

Generalized Linear Models

Linear models are applicable to problems that have Gaussian errors. In many
situations the optimization practitioner has to face response values that fol-
low some skewed distribution or have nonconstant variance. To deal with
nonnormal responses, data transformations are often recommended, although
the choice of an adequate transformation can be difficult. Draper and Smith
(1998) discuss the need for transformation and present different transforma-
tion methods. Since the transformation may result in incorrect values for the
response value, i.e., log Y , if Y < 0, GLMs provide an alternative (McCul-
lagh & Nelder 1989). François & Lavergne (2001) and Bartz-Beielstein (2003)
use GLMs to analyze evolutionary algorithms. Bartz-Beielstein et al. (2005c)
propose GLMs to analyze and validate simulation models.

Logistic regression models that are based on the success ratio (SCR) can
be used to analyze the algorithm’s performance. Whether or not the optimiza-
tion run has located a prespecified optimum can be used as a performance
measure for algorithms. In this case, where the outcome variable can take
only two values, a linear regression model is not appropriate, but a logistic re-
gression model might be adequate. The number of successful runs can be seen
as a random variable having a binomial distribution. For an introduction into
logistic regression, the reader is referred to Collett (1991). Myers & Hancock
(2001) present an example that uses a genetic algorithm to solve consistent
labeling problems.

3.6 Graphical Tools 51

Standard textbooks on regression analysis such as Draper & Smith (1998)
present methods of checking the fitted regression model. However, the fact
that the regression model passes some test does not mean that it is the correct
model. Graphical tools should be used to guide the analysis. Half-normal plots,
design plots, interaction plots, box plots, scatter plots, and trellis plots that
can be applied to analyze computer experiments will be presented next.

3.6 Graphical Tools

This section presents graphical tools that support the analysis of factor effects
and interactions. Half-normal plots, interaction plots, and box plots can com-
plement classical DOE methods. They are based on factorial designs (designs
will be introduced in Chap. 5). Scatter plots can be used in combination with
space-filling designs. These designs are commonly used in modern DACE.

3.6.1 Half-Normal Plots

Least-squares estimation gives an estimate of the effect of a factor. The esti-
mated effects minimize the sum of squared differences between raw data and
the fitted values from the estimates. An ordered list of the main effects (and
of the interactions as well) can be constructed. A half-normal plot is a plot
of the absolute value of the effect estimates against their cumulative normal
probabilities.

Example 3.2. Figure 3.4 depicts a typical half-normal plot that has been
generated while optimizing an evolution strategy (Mehnen et al. 2004a). Evo-
lution strategies and other algorithms are introduced in Chap. 6. Regarding
this half-normal plot, τm

0 , the multiplier for the individual and global mutation
parameters, the population size μ, and the selection pressure have a signifi-
cant influence on the algorithm’s performance. In addition, the interactions
between μ and τm

0 , and μ and ν play a significant role. �

3.6.2 Design Plots

Design plots visualize the means of each factor and plot 100(1−α) confidence
intervals around each mean. Design plots should be complemented with inter-
action plots. They might be misleading, because they are intuitively appealing
and easy to “understand.” Figure 8.6 gives an illustrative example.

3.6.3 Interaction Plots

If the number of factor levels is low, e.g., in two-factor experiments, interaction
plots can be used to check for interactions between the factors. Interaction
plots show how pairs of factors, i.e., selection method and population size in
evolution strategies, interact in influencing the response (Y).

52 3 Statistics for Computer Experiments

Fig. 3.4. Half-normal plot to de-
tect important factors of an evolution
strategy. The multiplier for the indi-
vidual and global mutation parame-
ters τm

0 , the population size μ, and
the selection pressure have a statisti-
cally significant influence on the algo-
rithm’s performance. In addition, the
interactions between μ and τm

0 , and μ
and ν play a significant role (Mehnen
et al. 2004a)

-2 -1 0 1 2

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

quantiles

s
ta

n
d

a
rd

iz
e

d
e

ff
e

c
ts

��

�
�

��
0

m
�

0

m

Example 3.3. Consider Fig. 3.5. The horizontal axes of the plots show lev-
els of the first factor: comma selection (Comma), plus selection (Plus), and
threshold selection (TS). Lines are drawn for the mean of the response for the
corresponding level of the interaction between selection method and selective
strength (left panel) and selection method and population size (right panel).
As the lines run in parallel in both panels, no interactions, which might make
the analysis difficult, can be detected. These figures indicate that the selection
method TS improves the performance independently from the population size
or selective pressure (Beielstein & Markon 2001). �

2.
39

0
2.

39
5

2.
40

0
2.

40
5

0 1 2

 B

4
6
9

Comma Plus TS

2.
38

2.
39

2.
40

2.
41

2.
42

0 1 2

 C

2
4
7

Comma Plus TS

Fig. 3.5. Interaction plots. Plot of the means of the responses. The labels on the
x-axis represent different selection mechanisms for an evolution strategy: comma
selection (0), plus selection (1), and threshold selection (2). Selective strength (B)
with levels 4, 6, and 9 and population size (C) with levels 2, 4, 7 have been chosen
for the comparison (Beielstein & Markon 2001)

3.6 Graphical Tools 53

3.6.4 Box Plots

Box plots as illustrated in Fig. 3.6 display the distribution of a sample.
They are excellent tools for detecting changes between different groups of
data (Chambers et al. 1983). Let the interquartile range (IQR) be defined as
the difference between the first and the third sample quartiles. Besides the
three sample quartiles (the lower, the median, and the upper quartiles), the
minimum and the maximum values, two limits are used to generate the box
plots: yl = q.25 − 1.5IQR and yu = q.25 + 1.5IQR. Possible outliers may lie
outside the interval [yl, yu]. Figure 7.11 shows an example.

1 2

5

10

15

20

25

30

35

F
un

ct
io

n
va

lu
e

Configuration

A

B

D

C

E

Fig. 3.6. Five ele-
ments of a box plot.
This figure shows
possible outlier A,
quartiles B, C, D,
and adjacent value E

3.6.5 Scatter Plots

A scatter plot is a simple way to visualize data (Chambers et al. 1983; Croarkin
& Tobias 2004). It displays important information on how the data are dis-
tributed or the variables are related: Are the design variables x1 and x2 re-
lated? Are variables x1 and x2 linearly or nonlinearly related? Does the vari-
ation in x1 change depending on x2? Are there outliers? This information
should be taken into account before any statistical model is built. Scatter
plots have been used to detect factor settings that produced outliers and to
determine suitable variable ranges.

Example 3.4. Each panel in Fig. 3.7 depicts a scatter plot of the response
against one factor. The relationship between the function values and different
levels of social parameter c2 of a particle swarm optimization is shown in
the lower right-hand panel. Settings with c2 < 2.5 produced many outliers.
Reducing the region of interest for this variable from [0, 4] to [2.5, 4] resulted in

54 3 Statistics for Computer Experiments

0 50 100
−5

0

5

10

15

20

P

lo
g(

Y
)

0.4 0.6 0.8 1
−5

0

5

10

15

20

WMax

0 1 2 3 4
−5

0

5

10

15

20

C1

lo
g(

Y
)

0 1 2 3 4
−5

0

5

10

15

20

C2

Fig. 3.7. Scatter plots of the response log(y) plotted for different values of the
exogenous strategy parameters of a particle swarm optimization (p, c1, c2, and wmax)
while optimizing Rosenbrock’s banana function. A Latin hypercube design was used
to generate the data. These plots indicate that modifying the variable range of the
social parameter c2 from [0, 4] to [2.5, 4] leads to improved results (fewer outliers)

fewer outliers. Similar results could have been obtained with box plots, design
plots, or other tools from exploratory data analysis. No high-level statistical
model assumptions are necessary to perform this analysis. �

3.6.6 Trellis Plots

Trellis plots depict relationships between different factors through condition-
ing. They show how plots of two factors change with variations in a third, the
so called conditioning factor. Trellis plots consist of a series of panels where
each panel represents a subset of the complete data divided into subintervals
of the conditioning variable.

Example 3.5. Two variation operators DES and ES, and several population
sizes were analyzed. The data points have been divided into four intervals
I1–I4 due to their population-size values (Fig. 3.8): I1 = [7.5, 12.5] with 11
data points, I2 = [7.5, 17.5] with 16 data points, I3 = [12.5, 22.5] with 16 data
points, and I4 = [17.5, 22.5] with 11 data points.

Fig. 3.8 indicates that ES variation performs significantly better than DES
variation. The trellis plots show that this effect occurs independently from
the settings of the population size, i.e., there is no interaction between these
factors. �

3.7 Tree-Based Methods 55

Fig. 3.8. Trellis plots. Al-
gorithm’s performance mea-
sured as hypervolume Y .
These figures support the as-
sumption that ES variation
outperforms DES variation
significantly. Note, larger hy-
pervolume values (Y) are
better in this graph

There are many other useful visualization techniques. To illustrate the
online behavior of algorithms, plots of the best function values, of positions in
the search space, of endogenous parameter settings (e.g., step sizes in evolution
strategies), or diversity plots are frequently generated. Off-line visualization
techniques model data after the run is finished. They can be used to plot
successful and unsuccessful starting points (related to the success rate) and
other performance measures that will be discussed in Chap. 7.

3.7 Tree-Based Methods

Van Breedam (1995) applied tree-based classification methods to analyze al-
gorithms. He used an automatic interaction detection (AID) technique devel-
oped by Morgan & Sonquist (1963) to determine the significant parameter
settings of genetic algorithms. Breiman et al. (1984) introduced classification
and regression trees (CART) as a “flexible nonparametric tool to the data an-
alyst’s arsenal.” Tree-based methods can be deployed for screening variables
and for checking the adequacy of regression models (Therneau & Atkinson
1997). AID and CART use different pruning and estimation techniques.

The construction of regression trees can be seen as a type of variable
selection (Chambers & Hastie 1992; Hastie et al. 2001). Consider a set of
design variables X = {x1, . . . , xd} and a quantitative response variable Y .
Design variables are called predictor variables in the context of CART. A
regression tree is a collection of rules such as “if x1 ≤ 5 and x4 ∈ {A, C}, then
the predicted value of Y is 14.2,” which are arranged in a form of a binary
tree (see, e.g., Fig. 3.9).

56 3 Statistics for Computer Experiments

 6.7868 17.2994

9.19525 14.2307 12.4149 17.6222

 rho < 1.4001

 psi < 0.470885 psi < 0.601164

 rho < 1.19801 rho < 1.90603

At this node:
rho < 1.4001
0.470885 < psi

Fig. 3.9. Pruned regression tree to analyze the design variable of a Nelder–Mead
simplex algorithm. The left subtree of a node contains the configurations that fulfill
the condition in the node. It is easy to see that smaller ρ and larger ψ values improve
the algorithm’s performance

The binary tree is built up by recursively splitting the data in each node.
The tree can be read as follows: If the rule that is specified at the node
is true, then take the branch to the left; otherwise take the branch to the
right. The partitioning algorithm stops when the node is homogeneous or
the node contains too few observations. If qualitative and quantitative design
variables are in the model, then tree-based models are easier to interpret than
linear models. The endpoint of a tree is a partition of the space of possible
observations.

Tree construction (TC) comprises three phases (Martinez & Martinez
2002):

(TC-1) Growing. In the first phase of the construction of a regression tree a
large tree Tmax is grown. The partitioning procedure requires the specifica-
tion of four elements: a splitting criterion, a summary statistic to describe
a node, the error of a node, and the prediction error (Therneau & Atkin-
son 1997). The splitting process can be stopped when a minimum node
size is reached. Consider a node v. A leaf l is any node that has no child
nodes, and TL denotes the set of all leaves of a tree T . A subtree is the
tree which is a child of a node.

The summary statistic is given by the mean of the node y(v), which
is defined as the average response of the cases that fulfill the condition in
the node:

y(v) =
1

nv

∑
xi∈v

yi,

3.7 Tree-Based Methods 57

where nv denotes the number of cases in this node. The squared error of
a node is related to the variance of y(v). It is defined as

R(v) =
1

n

∑
xi∈v

[yi − y(v)]
2
,

where n denotes the size of the entire sample. The mean squared error for
the tree T is obtained by adding up all of the squared errors in all of the
leaves:

R(T) =
∑
l∈TL

R(l).

The mean squared error for the tree is also referred to as the total within-
node sum of squares. As a splitting criterion, the change in the mean
squared error for a split sv is used:

ΔR(sv) = R(v) − (R(vL) + R(vR)),

where vL and vR denote the left and right subtrees with root node v,
respectively. The best split s∗v is the split that maximizes the change in
the mean squared error ΔR(sv).

(TC-2) Pruning. The large tree Tmax is pruned back in a second phase of the
tree construction. The pruning procedure uses a cost-complexity measure:

Rcp
(T) = R(T) + cpnL, cp ≥ 0,

where nL is the number of leaves. As a large tree with leaves that contain
only cases from one class has a mean squared error R(T) = 0, the cp

value represents the complexity cost per leaf. Take the tree that minimizes
Rcp

(T) to be optimal for the given value of cp. Note that the value of
R(T) decreases as the size of the tree is increased, while cpnL increases.
By increasing cp, we can move from one optimum to the next. Each move
might require a reduced tree, because the optimal tree size decreases as cp

increases. The pruning procedure constructs a finite sequence of optimal
subtrees such that

Tmax > T1 > T2 > . . . > Tk > . . . > TK = {v1},
where {v1} is the root node of the tree, and

0 = cp1
< . . . < cpk

< cpk+1
< . . . < cpK

.

(TC-3) Selection. Finally, the “best” tree is chosen in the selection phase
from the sequence of subtrees generated in step TC-2. To select the right
tree, the cross-validation estimate for the prediction error RCV(Tk) for
each tree in the sequence of pruned trees and the associated estimate
of the standard error of the cross-validation estimate of the prediction
error sR(Tk) are determined next. Let T ′ denote the subtree that has

58 3 Statistics for Computer Experiments

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

Number of terminal nodes

R
es

id
ua

l v
ar

ia
nc

e

Resubstitution error
Cross−validation error
Estimated best tree T*

Fig. 3.10. Visualization of the 1-SE (one standard error) selection rule to determine
the right tree. The tree with the smallest cross-validation error RCV is not chosen.
The 1-SE rule chooses the tree with six nodes, because its error lies in the 1-SE
corridor of the tree with the smallest error (the tree with seven nodes). The pruned
tree with six nodes is shown in Fig. 3.9. The full tree has 17 nodes. In addition, the
resubstitution error is plotted against the number of nodes in the tree. It is mono-
tonically decreasing because it does not measure the costs for including additional
nodes in the tree

the smallest estimated prediction error. Its standard error is denoted as
sR(T ′). The one standard error rule (1-SE rule) selects the smallest tree
T ∗ with

RCV(T ∗) ≤ RCV(T ′) + sR(T ′). (3.16)

The tree selection procedure is depicted in Fig. 3.10. The resubstitution
error , which is calculated from the whole data set, is also shown. It should
only be used to control the tree selection procedure because it gives an
optimistic assessment of the relative error.
The tree with the smallest error is not chosen, but instead the smallest
tree that reaches the error-corridor of the smallest error plus one standard
error (1-SE rule). The 1-SE rule chooses the tree with six nodes, since its
error lies in the 1-SE corridor of the tree with seven nodes.

3.8 Design and Analysis of Computer Experiments 59

3.8 Design and Analysis of Computer Experiments

We consider each algorithm run as a realization of a stochastic process. Kriging
is an interpolation method to predict unknown values of a stochastic process
and can be applied to interpolate observations from computationally expensive
simulations (Isaaks & Srivastava 1989). Our presentation follows concepts
introduced in Sacks et al. (1989), Jones et al. (1998), and Lophaven et al.
(2002b).

3.8.1 The Stochastic Process Model

The regression model
y = Xβ + ε,

cf. Eq. (3.12), requires that the response y and the error ε have the same vari-
ance. The assumption of a constant variance is unrealistic in many simulation
and optimization scenarios. A variance that varies with x appears to be more
realistic. For example, Kleijnen (1987) reports that the standard errors of the
yi’s in simulation models differ greatly. Similar ideas are presented in Jones
et al. (1998), where stochastic process models as alternatives to regression
models are introduced.

Consider a set of m design points x = (x1, . . . , xm)T with xi ∈ R
d as in

Sect. 3.5. In the DACE stochastic process model, a deterministic function is
evaluated at the m design points x. The vector of the m responses is denoted
as y = (y1, . . . , ym)T , with yi ∈ R. The process model proposed in Sacks et al.
(1989) expresses the deterministic response y(xi) for a d-dimensional input xi

as a realization of a regression model F and a stochastic process Z:

Y (x) = F(β, x) + Z(x). (3.17)

3.8.2 Regression Models

We use q functions fj : R
d → R to define the regression model

F(β, x) =

q∑
j=1

βjfj(x) = f(x)T β.

Regression models with polynomials of orders 0, 1, and 2 have been used in
our experiments. The constant regression model with q = 1 reads f1(x) = 1;
the linear model with q = d + 1 is f1(x) = 1, f2(x) = x1, . . . , fd+1(x) = xd;
and the quadratic model: f1(x) = 1, f2(x) = x1, . . . , fd+1(x) = xd, fd+2(x) =
x1x1, . . . , f2d+1(x) = x1xd, . . ., fq(x) = xdxd.

Figure 3.11 illustrates the difference between regression based on models
of order 0 and order 1.

60 3 Statistics for Computer Experiments

F
un

ct
io

n
va

lu
e

F
un

ct
io

n
va

lu
e

Fig. 3.11. Joint effects of population size P and learning rate cTau of an evolution
strategy in the DACE model. Left : regression model of order 0; right : the same data
model with a regression model of order 2. A Gaussian correlation model was used
for both cases

3.8.3 Correlation Models

The random process Z(·) is assumed to have mean zero and covariance
V (w, x) = σ2R(θ, w, x) with process variance σ2 and correlation model
R(θ, w, x). Correlations of the form

R(θ, w, x) =

d∏
j=1

Rj(θ, wj − xj)

will be used in our experiments. The correlation function should be chosen
with respect to the underlying process (Isaaks & Srivastava 1989). Lophaven
et al. (2002a) discuss seven different models. Well-known examples are

EXP : Rj(θ, hj) = exp(−θj |hj |),
EXPG : Rj(θ, hj) = exp(−θj |hj |θd+1), 0 < θd+1 ≤ 2, (3.18)

GAUSS : Rj(θ, hj) = exp(−θjh
2
j),

with hj = wj − xj , and for θj > 0. The exponential correlation function EXP

and the Gaussian correlation function GAUSS have a linear and a parabolic
behavior, respectively, near the origin. The general exponential correlation
function EXPG can have both shapes. Large θj ’s indicate that variable j
is active: function values at points in the vicinity of a point are correlated
with Y at that point, whereas small θj ’s indicate that also distant data points
influence the prediction at that point.

Maximum likelihood estimation methods to estimate the parameters θj

of the correlation functions from Eq. (3.18) are discussed in Lophaven et al.
(2002a).

DACE methods provide an estimation of the prediction error on an untried
point x, the mean squared error (MSE) of the predictor

3.8 Design and Analysis of Computer Experiments 61

MSE(x) = E (ŷ(x) − y(x)) . (3.19)

3.8.4 Effects and Interactions in the Stochastic Process Model

Santner et al. (2003) recommend to use a small design to determine important
factor levels. After running the optimization algorithm, scatter plots of each
input versus the output can be analyzed. Welch et al. (1992) advocate the
use of sensitivity analysis. A screening algorithm that is similar in spirit to
forward selection in classical regression analysis is used to identify important
factors. Sacks et al. (1989) propose an ANOVA-type decomposition of the
response into an average, main effects for each factor, two-factor interactions,
and higher-order interactions.

Example 3.6 (Effects in the DACE model). Let the average of y(x) over
the experimental region be

μ0 =

∫
y(x)

∏
h

dxh.

Define the main effect of factor xi averaged over the other factors by

μi(xi) =

∫
y(x)

∏
h �=i

dxh − μ0,

and the interaction effect of xi and xj by

μij(xi, xj) =

∫
y(x)

∏
h �=i,j

dxh − μ0 − μi(xi) − μj(xj).

Higher-order interactions can be obtained accordingly. To estimate these ef-
fects, y(x) is replaced by ŷ(x). Factors for which the predicted response is not
sensitive can be fixed in subsequent modeling steps. A similar approach was
proposed by Schonlau (1997) to plot the estimated effects of a subset xeffect

of the x variables.
Figure 3.12 illustrates the main effects in the DACE model that has been

generated while optimizing the exogenous strategy parameters of a (1 + 1)-
ES. See Sect. 7.5 for the discussion of this sequential parameter optimization
process. The four panels on the left show the estimated effects that have been
predicted with the first stochastic process model. By adding further design
points the model is improved. Predictions based on the improved model are
shown in the four panels on the right. �

As the design plots should be complemented with interaction plots, we
recommend to complement the effect plots from Fig. 3.12 with interaction
plots that can be produced with the DACE toolbox (Lophaven et al. 2002b).
These three-dimensional visualizations can be used to illustrate the interac-
tion between two design variables as well as the relationship between these
design variables and the associated mean squared error of the predictor from
Eq. (3.19).

62 3 Statistics for Computer Experiments

Fig. 3.12. Effects in the
DACE model. The model
was based on data from
case study I (Sect. 8.2)

0 10 20 30
−2

0

2

4

6

Sn

E
st

im
at

ed
 e

ffe
ct

2 4 6 8
−20

0

20

40

60

Sr

E
st

im
at

ed
 e

ffe
ct

0.8 0.9
−200

0
200
400
600
800

Sa

E
st

im
at

ed
 e

ffe
ct

0 10 20
−5

0

5

10

Su

E
st

im
at

ed
 e

ffe
ct

3.9 Comparison

Comparing classical linear regression models and tree-based regression mod-
els, we can conclude that regression trees present results in an intuitively
understandable form. The results are immediately applicable, and interac-
tions are automatically included. Regression trees can handle qualitative and
quantitative factors. On the other hand, it is not guaranteed that the overall
tree is optimal. The splitting criteria are only locally optimal; that is, it is
only guaranteed that each single split will be optimal. Trees can become quite
large and can then make poor intuitive sense. If only a small set of data is
available, parametric models might be advantageous that are based on strong
assumptions regarding the underlying distribution or the form of the linear
model.

To compare different regression techniques the following criteria might be
useful: Is the technique flexible; that is, can it cope with different types of
variables (quantitative, qualitative) and does not require assumptions on the
underlying distribution? Are the results plausible, can even complex interac-
tions be detected? Is the method able to model gathered data and to predict
new values? The availability of related literature and software packages should
be judged as well.

A combination of different techniques is useful. Tree-based techniques may
produce different insights than regression models. Regression trees can be used
at the first stage to screen out the important factors. If only a few quantitative
factors remain in the model, DACE techniques can be applied to get an exact
approximation of the functional relationship between parameter settings and
an algorithm’s performance. Sequential designs have been applied successfully
during our analysis (Bartz-Beielstein & Markon 2004; Bartz-Beielstein et al.
2004b).

3.10 Summary 63

3.10 Summary

The basic ideas from statistics presented in this chapter can be summarized
as follows:

1. A statistical hypothesis H is a statement regarding the parameters of a
distribution.

2. Hypothesis testing is the procedure of formulating a hypothesis H , taking
a random sample, computing a test statistic, and the acceptance of (or
failure to accept) H .

3. Paired data can simplify the statistical analysis.
4. Computer-intensive methods enable the estimation of unknown parame-

ters.
(a) Monte Carlo simulations can be used to estimate unknown parameters

of a known distribution.
(b) The bootstrap requires a representative sample from the population

only.
(c) It can be used to generate plots of the observed significance if the

sample distribution is unknown.
5. Standard definitions from DOE:

(a) Factors are input parameters to be varied during the experiment.
Their different values are called levels. Factors can be qualitative or
quantitative.

(b) Upper and lower bounds of each factor specify the region of interest.
(c) Output values are called responses.
(d) The main effect of a factor is the change in the response produced by

the change in the level of this factor averaged over the levels of the
other factors.

(e) An experimental design comprises a problem design and an algorithm
design.

6. The total variability in the data can be partitioned into the variability
between different treatments and the variability within treatments:

SST = SSTREAT + SSE.

This fundamental ANOVA principle is used in DOE, tree-based regres-
sion, and DACE.

7. Linear regression models are based on the equation y = Xβ + ε, where
X denotes a regression matrix that represents the experimental design, ε
is a vector of error terms, y is a vector with responses, and β is a vector
that represents the model parameters.

8. Half-normal plots, design plots, scatter plots, interaction plots, trellis
plots, and box plots are tools from exploratory data analysis to visual-
ize the distribution of the data and possible relations between factors.

9. The three basic steps to construct a regression tree are growing, prun-
ing, and selecting. Tree-based methods cannot replace, but they should
complement classical methods.

64 3 Statistics for Computer Experiments

10. The assumption of homogeneous variance in the regression model y =
Xβ + ε (Eq. (3.12)) appears to be unrealistic. DACE models include this
inhomogeneity in their model specification.

11. The DACE stochastic process model expresses the deterministic response
as a realization of a regression model and a random process.

12. An ANOVA-like decomposition can be used in DACE to visualize the
factor and interaction effects.

3.11 Further Reading

Montgomery (2001) presents an introduction to the classical design of experi-
ments, the bootstrap is introduced in Efron & Tibshirani (1993), classification
and regression trees are discussed in Breiman et al. (1984), and Santner et al.
(2003) describe the design and analysis of computer experiments. The MAT-

LAB toolbox DACE provided by Lophaven et al. (2002b) implements the
basic functions to construct stochastic process models.

4

Optimization Problems

Don’t get involved in partial problems, but always take
flight to where there is a free view over the whole single
great problem, even if this view is still not a clear one.

—Ludwig Wittgenstein

A well-established experimental procedure in evolutionary computation and
related scientific disciplines, like operations research or numerical analysis, to
judge the performance of algorithms can be described as shown in Fig. 4.1.
This framework relies on the assumption that the experimenter can find the

Heuristic: Comparing Algorithms

1. Define a set of test functions (and an associated testing environment to
specify starting points, termination criteria, etc.).

2. Perform tests.
3. Report the performances of the algorithms, for example the number of suc-

cessfully completed runs. Obviously, the algorithm with the highest (ex-
pected) performance is considered best.

Fig. 4.1. Heuristic for the comparison of two algorithms

best algorithm out of a set of potential candidate algorithms. Test suites are
commonly used to compare the performance of different optimization algo-
rithms. We assert that results from test suites provide useful means to vali-
date whether the implementation of an algorithm is correct (validation). They
can be seen as a starting point for further investigations. Why results from
test suites can give no satisfying answers to the research goals RG 2.1–2.4
introduced in Sect. 2.1.2 will be discussed in this chapter. We will consider

1. test functions
2. real-world optimization problems
3. randomly generated test problems

Solutions for unconstrained, global optimization problems are defined as fol-
lows. Consider a real-valued function f : R

d → R. A local minimizer is a point

66 4 Optimization Problems

x∗ such that there exists an ε environment Uε(x
∗) of x∗ (ε > 0) with

f(x∗) ≤ f(x), ∀ x ∈ Uε(x
∗). (4.1)

The related minimization problem is written as minx f(x). We will consider
unconstrained minimization problems only. If f(x∗) ≤ f(x) holds for all x ∈
R

d, x∗ is called a global minimizer. The symbol f(x) denotes the (objective)
function value at x. The following section presents problems related to test
functions discussed in the EC community.

4.1 Problems Related to Test Suites

Even in the well-structured world of mathematical optimization, a reason-
able choice of test functions to evaluate the effectiveness and the efficiency
of optimization algorithms is not trivial. However, even if the selection of a
test problem is assumed to be unproblematic, the choice of specific problem
instances can cause additional problems (a problem instance is a realization
of a generic optimization problem). Hence, for a given problem many different
instances can be considered. For example, varying the dimension defines dif-
ferent instances of the sphere function. Here we can mention two important
difficulties:

• The distribution of instances might influence the algorithm’s performance
significantly. Although the result from Goldberg (1979) and Goldberg et al.
(1982) suggested that the propositional satisfiability problem (SAT) can
be solved on average in O(n2), Franco & Paull (1983) showed that this
result was based on a distribution of instances “with a preponderance of
easy instances” (Mitchell et al. 1992). Neither was the algorithm clever,
nor the problem easy: Goldberg sampled from the space of all problem
instances without producing any hard cases.

• Increasing the dimensionality of a problem can make a test function easier.
This was demonstrated for Griewangk’s function, because the number of
local optima decreases in number and complexity as the dimensionality
increases (Whitley et al. 1996).

Whitley et al. (1996) discuss further aspects of test functions, i.e., sym-
metry and separability. A test function is separable if the global optimum
can be located by optimizing each variable independently. A two-dimensional
function is symmetric if f(x, y) = f(y, x) ∀x, y ∈ R

d. They state that “Sur-
prisingly, almost all of the functions in current evolutionary search test suites
are separable.” Therefore, they propose new test functions. One of these func-
tions, the whit function, is listed in Table 4.1.

A generic test suite might lead to algorithms that perform well on this
particular test suite only. The recommendation of many authors to define
heterogeneous test suites is merely an apparent solution. To avoid useless and

4.2 Test Functions 67

misleading results, it is important to understand why an algorithm performs
well or not so well.

It is common practice to finish an article with presenting tabularized result
data. The raw data from these tables require a correct interpretation and
should not be seen as final results but as starting points for interpretation.

It can be observed that the performance of optimization algorithms cru-
cially depends on the starting point x(0) and other start conditions. To put
more emphasis on testing the robustness (effectivity), Hillstrom (1977) pro-
posed using random starting points. However, random starting points may
cause new difficulties, see the discussion in Sect. 5.5.

The no free lunch theorem (NFL) for search states that there does not
exist any algorithm that is better than another over all possible instances of
optimization problems. However, this result does not imply that we should
not compare different algorithms. Keeping in mind that we are considering
problems of practical interest, the reader may be referred to the discussions
in Whitley et al. (1995), Droste et al. (2000), and Whitley et al. (2002).

The problems presented in this subsection can be solved, for example, by
building better test functions. But there are other, more severe objections
against the concept of strategy comparison stated in Fig. 4.1, as will be seen
in Chap. 7.

4.2 Test Functions

Some test functions have become very popular in the EC community. Table 4.1
lists some common functions for global, unconstrained optimization.

To differentiate between test functions for efficiency and effectivity (ro-
bustness), Schwefel (1975) proposed three test scenarios: The first tests were
performed to analyze the rates of convergence for quadratic objective func-
tions, and the second series to test the reliability of convergence for the general
nonlinear case. In a third test, the dependency of the computational effort on
the problem dimension for nonquadratic problems was studied. Therefore,
problem dimensions from 3 to 1000 have been used. The problem dimensions
of the second scenario were relatively small.

4.2.1 Test Function for Schwefel’s Scenario 1 and 2

The following function has been used in test series one and two, see also
Table 4.1:

(Sphere) Minimum x∗
i = 0, for i = 1, . . . , d. Optimum f∗ = 0.

4.2.2 Test Functions for Schwefel’s Scenario 2

The Rosenbrock function and the Schwefel function have been used in the
second test scenario (Rosenbrock 1960; Schwefel 1975).

68 4 Optimization Problems

Table 4.1. Common test functions based on Whitley et al. (1996). The reader is
referred to Schwefel (1995) for a more detailed discussion of test functions. Test
problem instances from the S-ring optimization problem are presented in Table 4.3

Symbol Name Function

sphere: sphere
Pd

i=1 x2
i

rosen: Rosenbrock 100(x2
1 − x2)

2 + (1 − x1)
2

step: step
Pd

i=1�xi�
quartic: quartic function with noise

“Pd
i ix4

i

”
+ N (0, 1)

shekel: Shekel’s foxholes
“
0.002 +

P25
j=1 1/(j +

P2
i=1(xi − aij)

6)
”
−1

rast: Rastrigin 10d
“Pd

i=1

`
x2

i − 10 cos(2πxi)
´”

schwe: Schwefel −x sin
“p|x|

”
grie: Griewangk 1 +

Pd
i=1 x2

i /4000 − Qd
i=1

“
cos(xi/

√
i)

”
whit: Whitley −x sin

“p|x − z|
”
− z sin

“p|z + x/2|
”
,

with z = y + 47

l1: L1-Norm
Pd

i |xi|
abs: absolute value function |x|
id: identity function x

boha: Bohachevsky x2 + 2y2 − 0.3 cos(3πx) − 0.4 cos(4πy) + 0.7

bilcos: bisecting line cosine x − cos(πx)

(Rosenbrock) Minimum x∗
i = (1, 1). Optimum f∗ = 0. Starting point x(0) =

(−1.2, 1). This is the famous two-dimensional “banana valley” function:

100(x2
1 − x2)

2 + (1 − x1)
2.

Some authors use a “generalized” Rosenbrock function defined as

d−1∑
i=1

[
100(xi+1 − x2

i)
2 + (1 − xi)

2
]
. (4.2)

(Schwefel) Starting point x(0) = 0. This function is Schwefel’s problem 2.26, a
slightly modified variant of Schwefel’s problem 2.3 (Schwefel 1995). Both
problems are one-dimensional test functions:

−x sin
(√

|x|
)

.

Besides infinitely many local optima, these functions have a machine-
dependent apparent global optimizer x∗

ap. Schwefel reported that most
algorithms located the first or highest local minimum left or right of

4.3 Elevator Group Control 69

x(0). A (10, 100) evolution strategy was able to reach the apparent
global optimum x∗

ap almost always. Obviously, one dimension is sufficient
to demonstrate this effect. However, a d-dimensional variant (d ≥ 1):∑d

i=1 −xi sin
(√|xi|

)
can be found in the literature, i.e., Whitley et al.

(1996).

4.2.3 Test Function for Schwefel’s Scenario 3

The L1-norm was used in the third scenario:

(L1-Norm) This function is Schwefel’s problem 3.4 (and problem 2.20):

d∑
i=1

|xi|.

These scenarios will be reconsidered in Chap. 7. Note that the experimenter’s
skill is needed to set up test functions for optimization scenarios as presented
above.

4.3 Elevator Group Control as a Real-World
Optimization Problem

Computer simulations are a suitable means to optimize many actual real-world
problems. Consider, e.g., a sequence of traffic signals along a certain route or
elevators’ movements in high-rise buildings. Optimization via simulation sub-
sumes all problems in which the performance of the system is determined by
running a computer simulation. As the result of a simulation run is a random
variable, we cannot optimize the actual value of the simulation output, or a
singular performance of the system Y . One goal of optimization via simula-
tion is to optimize the expected performance E[Y (x1, x2, . . . , xd)], where the
xi’s denote the controllable input variables (Schwefel 1979; Azadivar 1999;
Banks et al. 2001). The stochastic nature of the simulation output forces the
optimization practitioner to apply different methods than are applied in the
deterministic counterparts. The stochastic output in optimization via simula-
tion complicates the selection process in direct search methods. The efficiency
of the evaluation and selection method is a crucial point, since the search
algorithm may not be able to make much progress if the selection procedure
requires many function evaluations.

4.3.1 The Elevator Supervisory Group Controller Problem

The construction of elevators for high-rise buildings is a challenging task. To-
day’s urban life cannot be imagined without elevators. The elevator group

70 4 Optimization Problems

controller is a central part of an elevator system. It assigns elevator cars to
service calls in real time while optimizing the overall service quality, the traffic
throughput, and/or the energy consumption. The elevator supervisory group
control (ESGC) problem can be classified as a combinatorial optimization
problem (Barney 1986; So & Chan 1999; Markon et al. 2001). It reveals the
same complex behavior as many other stochastic traffic control problems such
as materials handling systems with automated guided vehicles. Because of the
many difficulties in analysis, design, simulation, and control, the elevator op-
timization problem has been studied for a long time. First approaches were
mainly based on analytical methods derived from queuing theory. Today, com-
putational intelligence (CI) methods and other heuristics are accepted as the
state of the art (Bäck et al. 1995; Crites & Barto 1998; Schwefel et al. 2003).
The elevator group controller determines the floors where the cars should go
to. Passengers requesting service can give hall calls. Since the group controller
is responsible for the allocation of elevators to hall calls, a control strategy to
perform this task in an optimal manner is required. The main goal in design-
ing a better controller is to minimize the time passengers have to wait until
they can enter an elevator car after having requested service. This time span
is called the waiting time.

During a day, different traffic patterns can be observed. For example, in
office buildings, an up-peak traffic is observed in the morning, when people
start to work, and, symmetrically, down-peak traffic is observed in the evening.
Most of the day there is balanced traffic with much lower intensity than at
peak times. Lunchtime traffic consists of two (often overlapping) phases where
people first leave the building for lunch or head for a restaurant floor, and then
get back to work (Markon 1995). The ESGC problem subsumes the following
task:

How to assign elevators to passengers in real time while optimizing
different elevator configurations with respect to overall service quality,
traffic throughput, energy consumption, etc.

Figure 4.2 illustrates the dynamics in an elevator system. Fujitec, one of the
world’s leading elevator manufacturers, developed a controller that uses a
neural network (NN) and a set of fuzzy controllers. The weights on the output
layer of the neural network can be modified and optimized. The associated
optimization problem is quite complex, because it requires the identification of
globally optimal NN weights. A further analysis (not shown here) reveals that
the distribution of local optima in the ESGC search space is unstructured and
that there are many flat plateaus. A plateau is a region of candidate solutions
with identical function values. For a given candidate solution x0 ∈ R

d exists
an ε-environment B(x0, ε) such that f(x0) = f(x) ∀x ∈ B(x0, ε).

The objective function values are stochastically disturbed due to the non-
determinism of service calls and are dynamically changing with respect to
traffic loads. In general, ESGC research results are not comparable, since the
elevator group control per se is not appropriate as a benchmark problem:

4.3 Elevator Group Control 71

Fig. 4.2. Visualization of the dynamics in an elevator system. Fujitec’s elevator
simulator representing the fine model. Six elevator cars are serving 15 floors. This
model is computationally expensive and has a high accuracy (Beielstein et al. 2003a)

• Elevator systems have a very large number of parameters that differ widely
among buildings, elevator models, manufacturers, etc.

• Elevator cars have complex rules of operation, and even slight differences,
e.g., in door operation or in the conditions for changing the traveling direc-
tion, can affect the system performance significantly. Even small elevator
systems have a very large state space, making direct solution infeasible,
thus no exact solutions are available for comparison. The sophisticated
ESGC rules are usually trade secrets of the manufacturers and cannot be
made commonly available for research.

In principle, the optimization practitioner can cope with the enormous com-
plexity of the ESGC problem in two different ways: (i) The problem can be
simplified, or (ii) resources can be used extensively. A parallel approach that
makes extensive use of a batch-job processing system is presented in Beielstein
et al. (2003b). We will concentrate on the first strategy and present a sim-
plified ESGC model. Ideally, a simplified ESGC model should comply with
the following requirements: It should enable fast and reproducible simulations
and should be applicable to different building and traffic configurations. Fur-
thermore, it must be a valid simplification of a real elevator group controller
and thus enable the optimization of one specific controller policy π and the
comparison of different controller policies. The simplified model should be
scalable to enable the simulation of different numbers of floors or servers.

72 4 Optimization Problems

It should be extensible, so that new features (i.e., capacity constraints) can
be added. Last but not least, the model is expected to favor experimental
and theoretical analyses. In the following section we propose a model—the
so-called S-ring—that conforms to all these requirements.

The approach presented next uses two models, an elevator simulator and
the S-ring as a simplified model. It is related to space mapping techniques.
Space mapping techniques iteratively update and optimize surrogate mod-
els (Bandler et al. 2004). They use two models for optimization, one fine
model (Fujitec’s simulator, see Fig. 4.2) that is computationally expensive
and has a high accuracy, and one coarse (surrogate) model (the S-ring, see
Fig. 4.3) that is fast to solve, but less accurate. The goal is to achieve an
improved solution with a minimal number of expensive function evaluations.

Fig. 4.3. The S-ring as an el-
evator system. Three cars are
serving six floors (or ten sites).
The sites are numbered from 0
to n−1. There are f = n/2−1
floors. This is a coarse (sur-
rogate) model that is fast to
solve, but less accurate. Re-
sults obtained from this model
should be transferable to other
systems (Markon et al. 2001)

c
0

s
0

c
1

s
1

c
n-1

s
n-1

c
f-1

s
f-1

1st floor

2nd floor

f-th floor

Server #1

Server #2

Server #3Customer

Customer

Customer

Customer

4.3.2 A Simplified Elevator Group Control Model: The S-Ring

When passengers give a hall call, they simply press a button. Therefore, only
a one-bit information for each floor is sent to the ESGC. It appears intuitively
correct to map the whole state of the system to a binary string. The system
dynamics is represented by a state transition table and can be controlled by a
policy. The sequential-ring model (S-ring model) has only a few parameters:
The number of elevator cars (also called servers) m, the number of sites n,
and the passenger arrival rate p (Markon et al. 2001). A 2-bit state (si, ci) is
associated with each site. The si bit is set to 1 if a server is present on the ith
floor, and to 0 otherwise. Correspondingly, the ci bit is set to 0 or 1 if there
is no waiting passenger, respectively at least one waiting passenger. The state
of the system at time t is given as

4.3 Elevator Group Control 73

x(t) := (s0(t), c0(t), . . . , sn−1(t), cn−1(t)) ∈ B
2n, (4.3)

with B := {0, 1}.
Example 4.1 (State of the S-ring system). The vector

x(t) = (0, 1, 0, 0, . . . , 0, 1, 0, 0)T

represents the state of the system that is shown in Fig. 4.3. For example,
there is a customer waiting on the first floor (c0 = 1), but no server present
(s0 = 0). �

A state transition table (Table 4.2) is used to model the dynamics in the
system. The state evolution is sequential, scanning the sites from n− 1 down
to 0, and then again around from n−1. The up and down elevator movements
can be regarded as a loop. This motivates the ring structure. At each time
step, one of the sites (floor queues) is considered, where passengers may arrive
with probability p.

Table 4.2. The triple ξ(t) = (ci, si, si+1) in the first column represents the state
of the current site: customer waiting, server present, and server present on the next
floor. The probability of a state change to the state ξ(t + 1) shown in the fourth
column is given in the second column. Column three denotes the decision. The change
in the number of sites with waiting customers Δ = Q(t + 1)−Q(t), see Eq. (4.4), is
shown in column five. That is, the server has to make a decision π (to take or to pass
the customer) if there is a customer waiting (1xx), and if there is a server present
on the same floor (11x) but no server on the next floor (110). Columns representing
configurations in which the policy affects the state of the systems are shaded dark
gray ; the configuration of the take decision from Example 4.2 is printed in boldface

ξ(t) Prob π(x) ξ(t + 1) Δ

000 1 − p {0, 1} 000 0
000 p {0, 1} 100 +1
001 1 − p {0, 1} 001 0
001 p {0, 1} 101 +1
010 1 − p {0, 1} 001 0
010 p 0 101 +1
010 p 1 010 0
011 1 {0, 1} 011 0
100 1 {0, 1} 100 0
101 1 {0, 1} 101 0
110 1 0 101 0
110 1 1 010 −1
111 1 {0, 1} 011 −1

Example 4.2 (S-ring). Consider the situation at the third site (the up direc-
tion on the third floor) in Fig. 4.3. As a customer is waiting, a server is present,

74 4 Optimization Problems

and there is no server on the next floor, the controller has to make a decision.
The car can serve the customer (take decision), or it can ignore the customer
(pass decision). The former would change the values of the corresponding bits
from (1, 1) to (1, 0), and the latter from (1, 1) to (0, 1). �

As the rules of operation are very simple, this model is easily reproducible and
is suitable for benchmark testing. Despite the model’s simplicity, it is hard to
find the optimal policy π∗ even for a small S-ring. The real π∗ is not obvious,
and its difference from heuristic suboptimal policies is nontrivial.

So far, the S-ring has been described as a simulation model. To use it as
an optimization problem, it is equipped with an objective function. Consider
the function that counts the sites with waiting customers at time t:

Q(t) = Q̂(x, t) =

n−1∑
i=0

ci(t). (4.4)

Then the steady-state time-average number of sites with waiting customers
in the queue is

Q = lim
T→∞

∫ T

0 Q(t)dt

T
, with probability one. (4.5)

The basic optimal control problem is to find a policy π∗ for a given S-ring
configuration. The optimal policy minimizes the expected number of sites
with waiting passengers in the system, that is, the steady-state time-average
as defined in Eq. (4.5). A 2n-dimensional vector, y ∈ R

2n, can be used to
represent the policy. Let θ : R → B define the Heaviside function:

θ(z) =

{
0, if z < 0,
1, if z ≥ 0,

(4.6)

and x = x(t) be the state at time t (see Eq.(4.3)). A linear discriminator, or
perceptron,

π(x) = π(x, y) = θ〈y, x〉, (4.7)

can be used to present the policy in a compact manner. For a given vector y
that represents the policy, and a given vector x that represents the state of
the system, a take decision occurs if π(x, y) � 0, otherwise the elevator will
ignore the customer.

The most obvious heuristic policy is the greedy one: When given the choice,
always serve the customer. The 2n-dimensional vector ygreedy = (1, 1, . . . , 1)T

can be used to represent the greedy policy. This vector guarantees that
the product in Eq. (4.7) equals 1, which is interpreted as a take decision.
Rather counterintuitively, this policy is not optimal, except in the heavy traf-
fic (p > 0.5) case. This means that a good policy must bypass some customers
occasionally to prevent a phenomenon that is known as bunching, which oc-
curs in elevator systems when nearly all elevator cars are positioned in close
proximity to each other.

4.3 Elevator Group Control 75

The perceptron S-ring problem can serve as a benchmark problem for
many optimization algorithms, since it relies on the fitness function:

F : R
2n → R

(Markon et al. 2001; Beielstein & Markon 2002). Figure 4.4 shows the cor-
relation between the noisy function values and the estimated function values.
Bartz-Beielstein et al. (2005c) describe the S-ring model as a partially observ-
able Markov decision process in detail.

5 6 7 8 9 10 11 12
5

6

7

8

9

10

11

12

Noisy function values

E
st

im
at

ed
 tr

ue
 fu

nc
tio

n
va

lu
es Fig. 4.4. S-ring. Estimated

versus noisy function values.
Test instance sring24 as listed
in Table 4.3. Estimated val-
ues have been gained through
reevaluation, whereas noisy
function values are based on
one evaluation only. Points
representing values from func-
tions without noise would lie
on the bisector

4.3.3 The S-Ring Model as a Test Generator

The S-ring model can be used to generate test problem instances. An S-ring
problem instance can be characterized by the number of sites, the number
of elevator cars, the arrival probability, and the simulation time. The S-ring
model has been used by Markon et al. (2006) to generate test instances as
shown in Table 4.3. A problem design specifies one or more instances of an
optimization problem and related restrictions, i.e., the number of available
resources (function evaluations). In addition, a computer experiment requires

Table 4.3. Test instances for the S-ring model

Instance Dimension Number of
sites

Number of
elevator cars

Arrival
probability

Simulation
time

sring12 12 6 2 0.2 1000
sring24 24 12 4 0.2 1000
sring36 36 18 8 0.2 1000
sring48 48 24 16 0.3 1000
sring96 96 48 32 0.3 1000

76 4 Optimization Problems

the specification of an algorithm design. As designs play an important role in
experimentation, they will be discussed in the following chapter.

4.4 Randomly Generated Test Problems

Although the S-ring model can be used to generate problem instances at ran-
dom, these instances have been generated deterministically. Three important
problems related to randomly generated problem instances can be mentioned:

Problem 4.1 (Floor or ceiling effects). Rardin & Uzsoy (2001) illustrate
subtle and insidious pitfalls that can arise from the randomness of the instance
generation procedure with a simple example: To generate instances of the n-
point traveling salesperson problem (TSP), (n × n) symmetric matrices of
point-to-point distances are generated as follows:

Fill the upper triangle of an n×n cost matrix with ci,j generated ran-
domly (independently and uniformly) between 0 and 20. Then com-
plete the instance by making cj,i = ci,j in the lower triangle and
setting ci,i = 0 along the diagonal.

The mean of the cell entries ci,j with i < j is 10 with standard deviation 5.77.
If n = 5000 points are generated, the average tour length will be 10 · 5000 =
50, 000 with standard deviation 5.77

√
5000 = 408. Nearly every feasible tour

will have a length within ±3 ·408 of 50, 000. Hence, “almost any random guess
will yield a good solution.”

Problem 4.2 (Search-space structure). Reeves & Yamada (1998) report
that local optima of randomly generated permutation flow-shop scheduling
problem instances are distributed in a big-valley structure, i.e., local optima
are relatively close to other local optima. This big-valley structure in the
search space topology is well-suited for many optimization algorithms. But
do structured problem instances, which are assumed to be more realistic,
possess a similar distribution? Watson et al. (1999) showed for permutation
flow-shop scheduling problems that local optima are generally distributed on
large plateaus of equally fit solutions. Therefore, the assumption of big-valley
structured local optima distributions does not hold for this type of problem.
Whitley et al. (2002) conclude that there are differences in the performance
of scheduling algorithms on random and structured instances.

The distribution of the S-ring local optima is not purely random. An analy-
sis of the search space shows that there are plateaus of equally good solutions.

Problem 4.3 (Different sources of randomness). To separate different
sources of randomness is a basic principle in statistics. Equation (3.9) describes
how the total variability can be partitioned into its components:

SST = SSTREAT + SSE.

4.7 Further Reading 77

This will be referred to as the fundamental ANOVA principle in the following.
If stochastic search algorithms are subject of the analysis, using randomly

generated test instances will add another source of randomness to the algo-
rithm’s randomness that might complicate the analysis.

4.5 Recommendations

Standard test suites are valuable tools in the first phase of an experimental
analysis.

Clearly specified hypotheses should be used in the second phase of the
analysis, e.g., based on the guidelines from experimental algorithmics (GL 2.1
to 2.5) and Mayo’s extensions as presented in Sect. 2.5. Statistical tests are
used as learning tools, they provide means to evaluate what has been learned.

4.6 Summary

The basic ideas from this chapter can be summarized as follows:

1. Specifying test functions, performing tests, measuring performances, and
selecting the algorithm with the best performance is a commonly used
procedure.

2. Not only the set of test functions, but also the set of test instances has to
be chosen carefully.

3. Test functions can be distinguished from real-world optimization prob-
lems.

4. Test functions should be combined with an optimization scenario.
5. The S-ring model defines a simplified elevator group control problem. It

(a) enables fast and reproducible simulations,
(b) is applicable to different buildings and traffic patterns,
(c) is scalable and extensible, and
(d) can be used as a test problem generator.

6. A problem design specifies at least one problem instance plus related re-
strictions.

7. Randomly generated problem instances can complicate the analysis of
stochastic search algorithms.

4.7 Further Reading

Whitley et al. (1996) provide a good starting point for the discussion of test
functions in evolutionary computation. Schwefel (1995) presents a thought-
fully compiled set of test functions to compare deterministic and stochastic
optimization algorithms. Elevator group control and related problems are an-
alyzed in Markon et al. (2006).

5

Designs for Computer Experiments

A common mistake people make when trying
to design something completely foolproof is to
underestimate the ingenuity of complete fools.

—Douglas Adams

This chapter discusses designs for computer experiments. Before the optimiza-
tion runs are started, the experimenter has to choose the parameterizations
of the optimization algorithm and one or more problem instances.

Johnson (2002) suggests to explain the corresponding adjustment process
in detail, and therefore to include the time for the adjustment in all reported
running times to avoid a serious underestimate. An important step to make
this procedure more transparent and more objective is to use design of ex-
periments techniques. They provide an algorithmic procedure to tune the
exogenous parameter settings for the algorithms under consideration before
the complex real-world problem is optimized or two algorithms are compared.
Experimental design provides an excellent way of deciding which simulation
runs should be performed so that the desired information can be obtained
with the least number of experiments (Box et al. 1978; Box & Draper 1987;
Kleijnen 1987; Kleijnen & Van Groenendaal 1992; Law & Kelton 2000).

We will develop experimental design techniques that are well suited for pa-
rameterizable search algorithms such as evolution strategies, particle swarm
optimization, or Nelder–Mead simplex algorithms. The concept of splitting
experimental designs into algorithm and problem designs, which was intro-
duced for evolution strategies in Beielstein et al. (2001), is detailed in the
following. Algorithm tuning as introduced in Chap. 7 refers to the task of
finding an optimal (or improved) algorithm design for one specific problem
design.

Design decisions can be based on geometric or on statistical criteria.
Regarding geometric criteria, two different design techniques can be distin-
guished: The samples can be placed either (1) on the boundaries, or (2) in the
interior of the design space. The former technique is used in DOE, whereas
DACE uses the latter approach. An experiment is called sequential if the
experimental conduct at any stage depends on the results obtained so far.
Sequential approaches exist for both variants. We recommend using factorial
designs or space-filling designs instead of the commonly used one-factor-at-
a-time designs. It is still an open question which design characteristics are

80 5 Designs for Computer Experiments

important: “. . . extensive empirical studies would be useful for better under-
standing what sorts of designs perform well and for which models”(Santner
et al. 2003, p. 161).

5.1 Computer Experiments

Optimization runs will be treated as experiments. There are many degrees
of freedom when starting an optimization run. In many cases search algo-
rithms require the determination of parameters such as the population size in
evolutionary algorithms before the optimization run is performed. From the
viewpoint of an experimenter, design variables (factors) are the parameters
that can be changed during an experiment. Generally, there are two different
types of factors that influence the behavior of an optimization algorithm:

1. problem-specific factors, i.e., the objective function
2. algorithm-specific factors, i.e., the population size or other exogenous pa-

rameters

We will consider experimental designs that comprise problem-specific factors
and exogenous algorithm-specific factors. Algorithm-specific factors will be
considered first. Endogenous can be distinguished from exogenous parame-
ters (Beyer & Schwefel 2002). The former are kept constant during the op-
timization run, whereas the latter, e.g., standard deviations, are modified by
the algorithms during the run. Standard deviations will be referred to as step
widths or mutation strengths. Considering particle swarm optimization, step
widths and their associated directions are frequently referred to as velocities .

An algorithm design XA ⊆ DA (DA denotes the space of all algorithm
designs, i.e., all possible exogenous parameter settings) is a set of vectors,
each representing one specific setting of the design variables of an algorithm.
A design can be specified by defining ranges of values for the design variables.
Note that a design can contain none, one, several, or even infinitely many
design points.

Example 5.1 (Algorithm design). Consider the set of exogenous strategy
parameters for particle swarm optimization algorithms with the following val-
ues: swarm size s = 10, cognitive parameter c1 ∈ [1.5, 2], social parameter
c2 = 2, starting value of the inertia weight wmax = 0.9, final value of the
inertia weight wscale = 0, percentage of iterations for which wmax is reduced
witerScale = 1, and maximum value of the step size vmax = 100. This algorithm
design contains infinitely many design points. �

The optimal algorithm design is denoted as X∗
A. Optimization is interpreted

in a very broad sense—it can refer to the best design point x∗
a as well as

the most informative design points. Problem designs XP ⊆ DP (DP denotes
the space of all instances of one optimization problem) provide information

5.2 Classical Algorithm Designs 81

related to the optimization problem, such as the available resources (number
of function evaluations) or the problem’s dimension.

An experimental design XE ⊆ D (D denotes the space of all experimental
settings) consists of a problem design XP and an algorithm design XA. The
run of a stochastic search algorithm can be treated as an experiment with
a stochastic output Y (xa, xp), with xa ∈ DA and xp ∈ DP . If the random
seed is specified, the output would be deterministic. This case will not be
considered further, because it is not a common practice to specify the seed
that is used in an optimization run. Performance can be measured in many
ways, for example, as the best or the average function value for n runs. One of
our goals is to find a design point x∗

a ∈ DA that improves the performance of
an optimization algorithm for one problem design point xp ∈ DP . To test the
robustness of an algorithm, more than one design point can be considered.

Example 5.2 (Problem design). Robustness can be defined as good per-
formance over a wide range of problem instances. A very simple example is
the function sphere:

∑d
i=1 x2

i and a set of d-dimensional starting points

x
(0)
i =

(−i, i, . . . , (−i)d
)T

, i = 1, 2, 3.

�

The optimization of real-world problems requires algorithms with good initial
parameters, since many real-world problems are computationally expensive,
e.g., optimization via simulation (Schwefel 1979; Banks et al. 2001). There-
fore only a few optimization runs are possible, which should be performed
with good parameter settings. Optimization practitioners are interested in
obtaining a good parameter setting with a minimum number of optimization
runs. The choice of an adequate parameter setting, or design, can be based
on expert knowledge. But in many cases there is no such knowledge available.

5.2 Classical Algorithm Designs

In this section we will consider the following task: Determine an improved
algorithm design point x∗

a ∈ DA for one fixed problem design point xp ∈ DP .
Consider the regression model y = Xβ + ε that was defined in Eq. (3.12)

with associated regression matrix X as introduced in Eq. (3.13). The regres-
sion matrix X is referred to as the design matrix in the context of exper-
imental designs. The optimal design can be understood as the set of input
vectors X∗ ⊂ DA that generates output values y that are as informative as
possible with respect to the exact functional relationship (Eq. (3.11)). Hence,
the optimal algorithm design provides more information than any other algo-
rithm design with respect to some optimality criterion. This information can
be used to detect an improved design point.

82 5 Designs for Computer Experiments

The classical criteria for optimality such as D-optimality have to cope
with the dependence on the model parameters. These so-called alphabetic
optimal designs attempt to choose design points so that some measure of
error in prediction, which depends on the underlying assumed model, is min-
imized (Federov 1972; Box & Draper 1987; Pukelsheim 1993; Spall 2003).

Example 5.3 (Optimality criteria).

1. A design is A-optimal if it minimizes the sum of the main diagonal el-
ements of (XT X)−1. Hence, as can be seen from Eq. (3.15), A-optimal
designs minimize the sum of the variances of the regression coefficients.

2. A design is said to be D-optimal if

det
(
(XT X)−1

)
(5.1)

is minimized, where X is the design matrix (Montgomery 2001). �

Often, it is not trivial to formulate the experimental goals in terms of these
optimal design criteria. And, “even if we can formulate the problem in this
way, finding the optimal design may be quite difficult”(Santner et al. 2003,
p. 124). Despite of these problems, factorial designs as one relevant and often
applied type of D-optimal designs will be introduced in the following section.

Factorial Designs

The commonly used one-factor-at-a-time method, where certain factors are
varied one at a time, while the remaining factors are held constant, provides
an estimate of the influence of a single parameter at selected fixed conditions
of the other parameters. Such an estimate may only have relevance under the
assumption that the effect would be the same at other settings of the other
parameters. This requires that effects of variables behave additively on the
response over the ranges of current interest. Furthermore, interactions cannot
be determined. Therefore, we do not recommend using this method.

Factorial designs are more efficient than one-factor-at-a-time designs (Klei-
jnen 1987). Box et al. (1978) give an instructive example that explains
the weakness of the classical one-factor-at-a-time design. Orthogonal designs
simplify the computations. They lead to uncorrelated regression coefficients
(cov(βi, βj) = 0, cf. Eq. (3.15)) and to a minimal variance of the predicted
response in the design space.

In the following, we use orthogonal designs with two levels for each factor:
The corresponding factorial design with k factors requires 2k experimental
runs. This is a 2k full factorial design or simply a 2k design. Since interac-
tions that involve many factors can be neglected in some situations, fractional
factorial designs omit the corresponding run configurations and require only
2k−p runs. Adding center points and axial points to 2k designs leads to cen-
tral composite designs (CCD) with axial runs (Fig. 5.1). The values of factor

5.2 Classical Algorithm Designs 83

(−1,−1) (−1,1)

(−a,0) (0,0) (a,0)

(1,1)(−1,1)

(0,a)

(0,−a)

Fig. 5.1. Central composite design with axial runs for k = 2. The value of a =
√

k
gives a spherical CCD; that is, all factorial and axial design points are on the surface
of a sphere of radius

√
k (Montgomery 2001)

levels can be scaled. A variable x is called scaled or standardized if x ranges
between −1 and +1.

An important objection against 2k designs is that nonlinear effects remain
undiscovered. Therefore, 2k designs are only used to get an overview over the
effects and their interactions, not to obtain the exact values. Furthermore,
techniques to measure the goodness of the model fit can be applied (Mont-
gomery 2001).

Hence, the entry −1 in the regression matrix X (Eq. (3.13)) denotes a
factor at its low level, and +1 a factor at its high level. Table 5.1 depicts a
fractional factorial 29−5

III design.
In general, the following two purposes require different designs:

1. Factorial designs are used to determine which factors have a significant
effect in the screening phase of the DOE.

2. To fine-tune the algorithm in the modeling and optimization phase,
CCDs, which extend the factorial designs, can be used.

The number of samples in the CCD scales as 2k, where k is the number of
factors in the model. Therefore CCD should only be used in the final phase
of the DOE procedure when the number of factors is very low.

Factorial designs that are commonly used in classical DOE place samples
on the boundaries of the design space. The interior remains unexplored. This is
due to the following model assumptions: The underlying model in the classical
DOE approach can be written as

ỹ = y + ε, (5.2)

where ỹ is the measured response, y the true value, and ε an error term.
The errors are usually assumed to be independent and identically distributed.

84 5 Designs for Computer Experiments

Table 5.1. Fractional factorial 29−5
III design. This design is used for screening the

ES parameters. Concrete values are shown in Table 7.4

Conf. A B C D E=ABC F=BCD G=ACD H=ABD J=ABCD

1 − − − − − − − − +

2 + − − − + − + + −
3 − + − − + + − + −
4 + + − − − + + − +

5 − − + − + + + − −
6 + − + − − + − + +

7 − + + − − − + + +

8 + + + − + − − − −
9 − − − + − + + + −

10 + − − + + + − − +

11 − + − + + − + − +

12 + + − + − − − + −
13 − − + + + − − + +

14 + − + + − − + − −
15 − + + + − + − − −
16 + + + + + + + + +

Eq. (5.2) is used to model the assumption that ε is always present. Therefore
the goal of classical DOE is to place samples in the design space so as to
minimize its influence. DOE employs an approximation model,

ŷ = f(x, ỹ(x)), (5.3)

where f is usually a low-order polynomial, and x denotes a sample point.
We can conclude from these model assumptions that design points should be
placed on the boundaries of the design space. This can be seen in Fig. 5.2:
The random errors remain the same in both design configurations, but the
estimated linear model (dotted lines) gives a poor approximation of the true
model if the samples are located in the interior of the design space (left figure).
Moving the design points to the boundaries, as shown in the right figure, yields
a better approximation of the true relationship.

5.3 Modern Algorithm Designs

Replicate runs reduce the variance in the sample means and allow the estima-
tion of the random error ε in stochastic computer experiments, cf. Eq. (5.2).

5.3 Modern Algorithm Designs 85

x

y

x

y

error

Fig. 5.2. DOE approximation error. The errors and true models (solid lines) are
the same in both configurations. Moving the design points to the boundaries yields
a better approximation model (dotted lines) (Trosset & Padula 2000)

Modern DACE methods have been developed for deterministic computer ex-
periments that have no random error. DACE assumes that the interesting
features of the true model can be found in the whole sample space. Therefore,
space-filling or exploratory designs, which place a set of samples in the interior
of the design space, are commonly used.

Metropolis & Ulam (1949) introduced a pseudo-Monte Carlo sampling
method for computer simulations. As Monte Carlo sampling (MC) places
samples randomly in the design space, large regions may remain unexplored.
Stratified MC sampling divides the design space into subintervals of equal
probabilities and therefore requires at least 2d samples.

McKay et al. (1979) proposed Latin hypercube sampling (LHS) as an al-
ternative to Monte Carlo sampling. The resulting designs are called Latin
hypercube designs (LHD). LHS is superior under certain assumptions to MC

sampling and provides a greater flexibility in choosing the number of samples.
LHS can be used to generate points for algorithm designs. One instance of
a LHD with ten design points in two dimensions is shown in Fig. 5.3. Note
that LHS might result in an ill-designed arrangement of sample points, for
example, if the samples are placed along a diagonal as shown in Fig. 5.3.

Example 5.4 (Ill-designed arrangements). Santner et al. (2003) describe
the following consequences that arise from ill-designed arrangements. Consider
the function

y(x1, x2) =
x1

1 + x2
, (x1, x2) ∈ [0, 1] × [0, 1]. (5.4)

The stochastic process was chosen as Y = β0 + Z, where Z(·) is a Gaussian
stochastic process with zero mean, unknown process variance, and power ex-
ponential correlation function (Eq. (3.18)). A comparison of the prediction
errors of the two designs from Fig. 5.3 yields “a better predictor over most
of the design space except for the diagonal,” where the ill-arranged design
“collects most of its data.” �

86 5 Designs for Computer Experiments

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 5.3. Two LHD samples of ten points. Left: Typical instance of a LHD. Right:
This design is considered an ill-designed arrangement, because it is not “truly space-
filling” (Santner et al. 2003, p. 130)

In addition, Santner et al. (2003) discuss several criteria that can be ap-
plied to generate designs by distance-based criteria, for example, maxmin
distance designs, or measures of the discrepancy between the empirical distri-
bution of the set of sample points and the uniform distribution.

5.4 Sequential Algorithm Designs

In some situations, it might be beneficial to generate the design points not
at once, but sequentially. The selection process for further design points can
include knowledge from the evaluation of previously generated design points.

Evolutionary operation (EVOP) was introduced in the 1950s by Box
(1957). The basic idea is to replace the static operation of a process by a
systematic scheme of modifications (mutations) in the control variables. The
effect of these modifications is evaluated and the process is shifted in the
direction of improvement: The best survives. Box associated this purely de-
terministic process with an organic mutation-selection process. Satterthwaite
(1959a, b) introduced a random evolutionary operation (REVOP) procedure.
REVOP was rejected by Box because of its randomness.

Sequential designs can be based on several criteria, for example, on the D-
optimal maximization criterion as presented in Example 5.3. We will present
a sequential approach that is based on a criterion developed for DACE, the
expected improvement.

Sequential sampling approaches with adaptation have been proposed for
DACE metamodels. For example, Sacks et al. (1989) classified sequential
sampling approaches with and without adaptation to the existing metamodel.
Jin et al. (2002) propose two sequential sampling approaches with adaptation
that are not limited to DACE models.

Santner et al. (2003, p. 178) present a heuristic algorithm for unconstrained
problems of global minimization. Let yn

min denote the smallest known mini-

5.5 Problem Designs 87

mum value after n runs of the algorithm. The improvement is defined as

improvement at x =

{
yn
min − y(x), yn

min − y(x) > 0,
0, yn

min − y(x) ≤ 0,
(5.5)

for x ∈ DA. As y(x) is the realization of a random variable, its exact value is
unknown. The goal is to optimize its expected value, the so-called expected im-
provement (EXPIMP). The discussion in Santner et al. (2003, p. 178 ff.) leads
to the conclusion that new design points are attractive “if either there is a high
probability that their predicted output is below the current observed mini-
mum and/or there is a large uncertainty in the predicted output.” This result
is in accordance with the experimenters’ intention to avoid sites that guaran-
tee worse results and to improve the model at the same time. It constituted
the motivation for the EXPIMP heuristic shown in Fig. 5.4 (Bartz-Beielstein
& Markon 2004; Bartz-Beielstein et al. 2004b). Next, we will discuss problem
designs that consider more than just one design point of one problem design.

Heuristic: EXPIMP

1. Choose an initial design X
(n)
A ∈ DA with n points.

2. Run the algorithm at xi ∈ X
(n)
A , i = 1, . . . , n, to obtain the vector of output

values y(x).
3. Check the termination criterion.
4. Select a new point xn+1 that maximizes the expected improvement,

cf. Eq. (5.5).
5. Run the algorithm at xn+1 to obtain the output y(xn+1).

6. Set X
(n+1)
A = X

(n)
A ∪ {xn+1}, n = n + 1, and go to 3.

Fig. 5.4. Expected improvement heuristic

5.5 Problem Designs

Different instances of one optimization problem can be used to compare al-
gorithms. The problem design and the algorithm design to be compared can
be arranged in matrix form (Rardin & Uzsoy 2001). This matrix form will be
used to present performance measures that consider more than one problem
design point simultaneously. These performance measures will be introduced
in Sect. 7.2.3.

5.5.1 Initialization

It can be observed that the performance of optimization algorithms depends
crucially on the starting point x(0). There are mainly two different initial-

88 5 Designs for Computer Experiments

ization methods: deterministic and random starts. To test the robustness of
algorithms and not only their efficiency, Hillstrom proposed to use a series
of random starts. Twenty random starts are considered as “a compromise
between sample size and testing expense”(Hillstrom 1977). This initialization
method is nowadays often used for stochastic search heuristics such as particle
swarm optimization algorithms.

More et al. (1981) state that the use of random starts affects the repro-
ducibility of the results. Furthermore, random starting points introduce an
additional source of randomness. Since some methods of our analysis try to
explain as much randomness as possible by the differences between the algo-
rithms, this initialization method may cause unwanted side-effects that com-
plicate the statistical analysis. Better suited for our needs are deterministic
routines. We will present initialization and termination methods next.

To initialize the set of search points X(0) = {x(0)
1 , . . . , x

(0)
p }, the following

methods can be used:

(DETEQ) Deterministic. Each search point uses the same vector, which is
selected deterministically, i.e., xinit = 1T ∈ R

d. As this method uses only
one starting point xinit, it is not suitable to visualize the starting points
for which the algorithm converged to the optimum.

Example 5.5. Schwefel (1995) proposed the following initialization scheme
for high-dimensional nonquadratic problems:

x
(0)
i = x∗ +

(−1)i

√
d

, for i = 1, . . . , d. (5.6)

�

(DETMOD) Deterministically modified starting vectors. The algorithm can
be tested with starting vectors x(0), 10x(0), and 100x(0) (More et al. 1981),
or any other scheme that generates starting points deterministically.

(UNIRND) Uniform random starts. Every search point (i = 1, . . . , p) uses
the same vector xinit ∈ R

d, where the d components are realizations of
independent U [xl, xu] random variables. This method introduces an addi-
tional source of randomness. It is suitable to visualize the starting points
for which the algorithm converged to the optimum. This visualization
technique is useful to get some insight into the behavior of the algorithm.

(NUNIRND) Nonuniform random starts. Every search point uses a differ-

ent vector x
(0)
i , (i = 1, . . . , p), that is, X(0) = {x(0)

1 , . . . , x
(0)
p }, with

x
(0)
i �= x

(0)
j ∀ i �= j. Each of the p vectors xinit ∈ R

d consists of d com-
ponents that are realizations of independent U [xl, xu] random variables.
This initialization method is used by many authors. It introduces an addi-
tional source of randomness, and it is not suitable to visualize the starting
points for which the algorithm converged to the optimum.

5.5 Problem Designs 89

Since variance reducing techniques are considered in our analysis, and we
are trying to explain the variance in the results based on the fundamen-
tal ANOVA principle (Eq. (3.10)), we prefer the deterministic initialization
scheme DETEQ to gain insight into the algorithm’s behavior. To test its
robustness, randomly or deterministically varied initialization schemes are
advantageous.

Example 5.6 (Influence of different initialization schemes). A (1+1)-
ES is started for the same problem and algorithm design, only the initializa-
tion schemes were modified. The algorithms use the following initialization
schemes:

• UNIRND, x(0) ∼ U [a, b]. Note that for the (1+1)-ES there is no difference
between UNIRND and NUNIRND.

• DETEQ, x(0) = (a + b)/2.
• DETMOD. The interval [a, b] is divided into tmax equidistant subintervals

Ik = [ak, bk] , (k = 1, . . . , tmax). The kth run uses x(0) = ak.

Results from this comparison are shown in Fig. 5.5. �

UNIRND DETEQ DETMOD

0

5

10

15

F
un

ct
io

n
va

lu
e

Initialization method

Fig. 5.5. Boxplots illustrating the effect
of three different initialization methods
(a = 10, b = 100). The deterministic
initialization scheme DETEQ, which uses
the same starting point for every run, gen-
erates the lowest variance in the data. The
DETMOD initialization can be used to
test the robustness of the algorithm be-
cause it generates the highest variance

5.5.2 Termination

An algorithm run terminates if it (or its budget) is:

(XSOL/FSOL) Solved. The problem was solved.
1. A domain convergence test becomes true when the xi’s are close

enough in some sense.
2. A function value convergence test becomes true when the function

value is close enough in some sense.
(STAL) Stalled. The algorithm has stalled. A step-size test becomes true when

the step sizes are sufficiently small.
(EXH) Exhausted. The resources are exhausted.

90 5 Designs for Computer Experiments

1. An iteration test becomes true if the maximum number of function
values is exhausted.

2. A no-convergence-in-time test becomes true. This includes domain
convergence and function value convergence.

Tests specified for the cases in which the algorithm is stalled or its budget is
exhausted are called fail tests. Termination is as important as initialization.
Even if the algorithm converges in theory, rounding errors may prevent con-
vergence in practice. Thus, fail tests are necessary for every algorithm. Singer
& Singer (2004) demonstrate the impact of the termination tests on the per-
formance of a Nelder–Mead or simplex algorithm: “A fairly simple efficiency
analysis of each iteration step reveals a potential computational bottleneck in
the domain convergence test.”

5.6 Discussion: Designs for Computer Experiments

5.6.1 Problems Related to Classical Designs

The assumption of a linear model for the analysis of computer algorithms is
highly speculative. As can be seen from Fig. 5.2, besides the selection of a
correct regression model, the choice of design points is crucial for the whole
procedure. Beielstein (2003) used a linear regression model to determine im-
proved algorithm designs for evolution strategies and simulated annealing.
This modeling approach holds more pitfalls than the DACE approach, which
uses space-filling designs and a stochastic process model. It will be presented
in Chap. 7.

5.6.2 Problems Related to Modern Designs

On the other hand, DACE was introduced for deterministic computer exper-
iments and not for the analysis of stochastic search algorithms. Performing
repeated runs and taking the mean value at the design points enables the
application of these techniques even for nondeterministic experiments. Deter-
minism is “introduced through the back door.”

Another problem that arises from DACE designs is the treatment of qual-
itative factors. Moreover, as Santner et al. (2003, p. 149) note:

It has not been demonstrated that LHDs are superior to any designs
other than simple random sampling (and they are only superior to
simple random sampling in some cases).

5.7 Recommendations

Based on our experience, we can give the following recommendations: If only
a few qualitative factors are relevant, then for each setting a separate Latin

5.8 Summary 91

hypercube design could be used. Otherwise, factorial design could be used
to screen out those qualitative factors that have the largest effect during the
first step of the experimentation. Latin hypercube designs can be used in the
second step to refine the analysis.

Factorial designs are applicable to test specific design points and com-
binations of specific settings, e.g., a population size s = 10 and a mutation
strength σ ∈ {1, 2}, whereas space-filling designs are well suited to test param-
eter ranges, e.g., s ∈ [10, 20] and a σ ∈ [1, 2]. In general, we prefer space-filling
designs to model the effects and interactions of factors from optimization al-
gorithms.

Despite the recommendations given in this chapter, the most frequently
used strategy in practice will be the best-guess strategy. It works reasonably
well in many situations, because it benefits from the experimenter’s feeling or
skill.

In England it is still not uncommon to find in a lab a youngish techni-
cian, with no formal education past 16 or 17, who is not only extraor-
dinarily skillful with the apparatus, but also the quickest at noting an
oddity on for example the photographic plates he has prepared from
the electron microscope (Hacking 1983).

Relying upon high-level experimental design theories may sometimes “help”
the experimenter to miss the point.

5.8 Summary

The results from this chapter can be summarized as follows:

1. An experimental design consists of a problem design and an algorithm
design.

2. Algorithm designs consider only exogenous strategy parameters.
3. Endogenous strategy parameters are modified during the run of an algo-

rithm.
4. The objective function, its dimension, and related constraints are specified

in the problem design XP ⊆ DP .
5. The algorithm design XA ⊆ DA defines the set of exogenous strategy

parameters of the algorithm, for example, the swarm (population) size of
a particle swarm optimization.

6. The task of searching for an optimized algorithm design for a given prob-
lem design is called algorithm tuning.

7. We do not recommend using one-factor-at-a-time designs, because they
fail to discover any possible interaction between the factors.

8. Factorial designs are widely used designs from classical DOE. Design
points are placed on the boundaries of the design space.

92 5 Designs for Computer Experiments

9. Latin hypercube designs are popular designs for modern DACE. These
designs are space filling: Design points are placed in the interior of the
design space.

10. Sequential designs can be constructed for both classical and modern de-
signs.

11. Designs of test problems specify one specific problem instance. This spec-
ification comprises the starting conditions and the termination criteria.

12. LHDs are widely spread not because they are superior, but because they
are easy to implement and the underlying design principles are compre-
hensible. Only seven words are necessary to explain the design principle:
“Place eight nonattacking castles on a chessboard.”

5.9 Further Reading

Chapter 12 in Law & Kelton (2000) provides an introduction to the use of
classical DOE techniques for computer simulations. Box et al. (1978) is a
classical text on experimental design. Santner et al. (2003) give a survey of
designs for modern DACE methods. Giunta et al. (2003) and Simpson et al.
(2004) discuss different design considerations.

6

Search Algorithms

The alchemists in their search for gold
discovered many other things of greater value.

—Arthur Schopenhauer

This chapter describes search algorithms for unconstrained optimization. The
focus lies on the determination of their exogenous strategy parameters (design
variables) to define the associated algorithm design. A short description of
these algorithms is given, too.

We distinguish deterministic from stochastic search algorithms. Methods
that can be found in standard books on continuous optimization such as No-
cedal & Wright (1999) are characterized here as deterministic optimization al-
gorithms. Stochastic or random strategies can be defined as methods “in which
the parameters are varied according to probabilistic instead of deterministic
rule”(Schwefel 1995, p. 87). Hoos & Stützle (2005) use the term “stochastic
local search” for algorithms that generate or select candidate solutions ran-
domly. Stochastic local search algorithms are popular for combinatorial opti-
mization problems. If the function is continuous in its first derivative, gradient
methods are usually more efficient than direct methods. Direct methods use
only function evaluations. There are deterministic algorithms, for example, the
simplex search of Nelder and Mead, and stochastic direct search algorithms,
for example, evolution strategies.

6.1 Deterministic Optimization Algorithms

6.1.1 Nelder and Mead

The Nelder–Mead simplex (NMS) algorithm was motivated by the obser-
vation that (d + 1) points are adequate to identify a downhill direction in a
d-dimensional landscape (Nelder & Mead 1965). However, (d+1) points define
also a nondegenerated simplex in R

d. Thus, it seemed a good idea to exploit a
simplex for probing the search space, using only function values (Lewis et al.
2000).

Nelder and Mead incorporated a set of moves that enhance the algorithm’s
performance, namely reflection, expansion, contraction, and shrinkage. A new

94 6 Search Algorithms

point is generated at each iteration. Its function value is compared to the func-
tion values at the vertices of the simplex. One of the vertices is replaced by the
new point. Reflection reflects a vertex of the simplex through the centroid of
the opposite face. Expansion allows the algorithm to take a longer step from
the reflection point (centroid) toward the reflected vertex, while contraction
halves the length of the step, thereby resulting in a more conservative search.
Finally, shrinkage reduces the length of all edges that are adjacent to the best
vertex, i.e., the vertex with the smallest function value. Thus, there are four
design variables to be specified, namely the coefficients of reflection ρ, expan-
sion χ, contraction γ, and shrinkage σ. Default settings of these parameters
are reported in Table 6.1. NMS is considered to be quite a robust but rel-
atively slow algorithm that works reasonably well even for nondifferentiable
functions (Lagarias et al. 1998).

Table 6.1. Default settings (algorithm design) of the exogenous parameters (design
variables) of the NMS algorithm. This design is used in the MATLAB optimization
toolbox (Lagarias et al. 1998)

Symbol Parameter Range Default

ρ Reflection ρ > 0 1.0
χ Expansion χ > max{1, ρ} 2.0
γ Contraction 0 < γ < 1 0.5
σ Shrinkage 0 < σ < 1 0.5

The MATLAB function fminsearch was used to perform the experi-
ments. It uses the following values for the design variables: ρ = 1, χ = 2,
γ = 0.5, σ = 0.5.

6.1.2 Variable Metric

The variable metric method is a quasi-Newton method. Quasi-Newton meth-
ods build up curvature information. Let H denote the Hessian, c a constant
vector, and b a constant, then a quadratic model problem formulation of the
form

min
x

1

2
xT Hx + cT + b

is constructed. If the partial derivatives of x go to zero, that is,

∇f(x∗) = Hx∗ + c = 0,

the optimal solution for the quadratic problem occurs. Hence

x∗ = −H−1c.

Quasi-Newton methods avoid the numerical computation of the inverse Hes-
sian H−1 by using information from function values f(x) and gradients ∇f(x)

6.2 Stochastic Search Algorithms 95

to build up a picture of the surface to be optimized. The MATLAB function
fminunc uses the formula of Broyden (1970), Fletcher (1970), Goldfarb (1970),
and Shanno (1970) to approximate H−1. The gradient information is derived
by partial derivatives using a numerical differentiation via finite differences.
A line search is performed at each iteration in the direction

−H−1
k · ∇f(xk).

6.2 Stochastic Search Algorithms

6.2.1 The Two-Membered Evolution Strategy

The two-membered evolution strategy, or (1 + 1)-ES, is included in our anal-
ysis for three reasons: (i) It is easy to implement, (ii) it requires only a few
exogenous parameters, and (iii) it defines a standard for comparisons. Many
optimization practitioners apply the (1+1)-ES to their optimization problem.
Schwefel (1995) describes this algorithm as “the minimal concept for an imi-
tation of organic evolution.” Let f denote an objective function f : R

d → R

to be minimized. The rules of a (1 + 1)-ES can be described as shown in Fig-
ure 6.1. The standard deviation σ will be referred to as step width or mutation
strength. The standard deviation σ is interpreted as the mean step length. The
ratio of the number of the successes to the total number of mutations, the so-
called success rate 1/sr, might be modified as well as the factor by which the
variance is reduced or increased, the so-called step-size adjustment factor sa.
A related algorithm design is shown in Table 6.2.

Figure 6.2 shows the 1/5 success rule derived by Rechenberg while analyz-
ing the (1 + 1)-ES on two basically different objective functions for selecting
appropriate step lengths (Rechenberg 1973).

A more precise formulation is required to implement the 1/5 success rule.
“From time to time during the optimization run” can be interpreted as “after
every su mutations.” The ratio of the number of the successes to the total
number of mutations, the so-called success rate 1/sr, might be modified as
well as the factor by which the variance is reduced or increased, the so-called
step-size adjustment factor sa. The number of iterations sn to estimate the
success rate has to be specified. Other schemes to modify the variance are
possible, e.g., to additive or exponential variations. Furthermore, a starting
value for the step size σ(0) has to be specified. The algorithm design for the
(1 + 1)-ES is summarized in Table 6.2.

A coding of the two-membered ES and an in-depth discussion of evolution
strategies and other direct search methods can be found in Schwefel’s seminal
book Evolution and Optimum Seeking (Schwefel 1995). This book is a slightly
extended version of Schwefel’s doctoral thesis from 1975 that was published
under the title Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie (Schwefel 1977), and translated into English four years
later (Schwefel 1981).

96 6 Search Algorithms

Procedure: (1 + 1)-ES.

Initialization: Initialize the iteration counter: t = 1. Determine: (i) a point X
(t)
1

with associated position vector x
(t)
1 ∈ R

d and (ii) a standard deviation σ(t).

Determine the function value y1 = f(x
(t)
1).

while some stopping criterion is not fulfilled do

Mutation: Generate a new point X
(t)
2 with associated position vector x

(t)
2

as follows:
x

(t)
2 = x

(t)
1 + z, (6.1)

where z is a d-dimensional vector. Each component of z is the real-
ization of a normal random variable Z with mean zero and standard
deviation σ(t).

Evaluation: Determine the function value y2 = f(x
(t)
2).

Selection: Accept X
(t)
2 as X

(t+1)
1 if

y2 < y1, (6.2)

otherwise retain X
(t)
1 as X

(t+1)
1 . Increment t.

Adaptation:
Update σ(t). (6.3)

done.

Fig. 6.1. The two-membered evolution strategy or (1+1)-ES for real-valued search
spaces. The symbol f denotes an objective function f : R

d → R to be minimized

6.2.2 Multimembered Evolution Strategies

An ES-algorithm run can be described briefly as follows: The parental popu-
lation is initialized at time (generation) g = 0. Then λ offspring individuals
are generated in the following manner: A parent family of size ρ is selected
randomly from the parent population. Recombination is applied to the object
variables and the strategy parameters. The mutation operator is applied to
the resulting offspring vector. After evaluation, a selection procedure is per-
formed to determine the next parent population. The populations created in

1/5 Success Rule: From time to time during the optimization obtain the
frequency of successes, i.e., the ratio of the number of the successes to the
total number of trials (mutations). If the ratio is greater than 1/5, increase the
variance; if it is less than 1/5, decrease the variance.

Fig. 6.2. Heuristic rule: 1/5 Success Rule

6.2 Stochastic Search Algorithms 97

Table 6.2. Factors of the two-membered evolution strategy. Based on the default
values, the step size σ is multiplied by 0.85 if the success rate is larger than 1/sr =
1/5, or equivalently, if more than 20 out of 100 mutations have been successful. The
symbol d denotes the problem dimension

Symbol Factor Range Default

sn Adaptation interval N 10d
su Update interval N d
sr 1/success rate R+ 5
sa Step-size adjustment factor R+ 0.85

σ(0) Starting value of the step size σ R+ 1

the iterations of the algorithm are called generations or reproduction cycles . A
termination criterion is tested. If this criterion is not fulfilled, the generation
counter (g) is incremented and the process continues with the generation of
the next offspring.

We consider the parameters or control variables from Table 6.3. This table
shows typical parameter settings. Bäck (1996) presents a kind of default hier-
archy that includes four parameterizations for simple and complex algorithms
and suggests to perform experiments. Hence, our approach can be seen as an
extension of Bäck’s methods.

The reader is referred to Bartz-Beielstein (2003) for a detailed descrip-
tion of these parameters. Schwefel et al. (1995) and Beyer & Schwefel (2002)
provide a comprehensive introduction to this special class of EA.

Table 6.3. Default settings of exogenous parameters of a “standard” evolution
strategy (Bäck 1996). Bäck does not recommend using “standard” without reflec-
tion. Problems may occur when these “standards” are blindly adopted and not
adjusted to the specific optimization problem. The offspring-parent ratio is defined
as ν = λ/μ, d is the problem dimension, and rd and ri denote discrete and interme-
diary recombination, respectively. It is a common practice to choose 1 or d different
standard deviations and a value of 2 or μ for the mixing number. Therefore nσ, ρ,
rx, rσ, and κ are treated as qualitative factors

Symbol Parameter Range Default

μ Number of parent individuals N 15
ν Offspring–parent ratio R+ 7

σ
(0)
i Initial standard deviations R+ 3

nσ Number of standard deviations {1, 2, . . . , d} 1
cτ Multiplier for the learning rate R+ 1
ρ Mixing number {1, 2, . . . , μ} 2
rx Recombination operator for object variables {ri, rd} rd

rσ Recombination operator for strategy variables {ri, rd} ri

κ Maximum age N 1

98 6 Search Algorithms

6.2.3 Particle Swarm Optimization

The flocking behavior of swarms and fish shoals was the main inspira-
tion which led to the development of particle swarm optimization algo-
rithms (Kennedy & Eberhart 1995). PSO belongs to the class of stochastic,
population-based optimization algorithms. It exploits a population of indi-
viduals to probe the search space. In this context, the population is called a
swarm and the individuals are called particles. Each particle moves with an
adaptable velocity within the search space, and it retains in a memory the
best position it has ever visited. PSO has been applied to numerous simulation
and optimization problems in science and engineering (Kennedy & Eberhart
2001; Parsopoulos & Vrahatis 2002, 2004). PSO’s convergence is controlled by
a set of design variables that are usually either determined empirically or set
equal to widely used default values.

There are two main variants of PSO with respect to the information ex-
change scheme among the particles. In the global variant, the best position ever
attained by all individuals of the swarm is communicated to all the particles at
each iteration. In the local variant, each particle is assigned to a neighborhood
consisting of prespecified particles. In this case, the best position ever attained
by the particles that comprise a neighborhood is communicated among them.
Neighboring particles are determined based on their indices rather than on
their actual distance in the search space. Clearly, the global variant can be
considered as a generalization of the local variant, where the whole swarm is
considered as the neighborhood for each particle. In the current work we look
at the global variant only.

Assume a d-dimensional search space, S ⊆ R
d, and a swarm consisting of

s particles. The ith particle is a d-dimensional vector,

xi = (xi1, xi2, . . . , xid)
T ∈ S.

The velocity of this particle is also a d-dimensional vector,

vi = (vi1, vi2, . . . , vid)
T .

The best previous position encountered by the ith particle (i.e., its memory)
in S is denoted by

p∗i = (p∗i1, p
∗
i2, . . . , p

∗
id)

T ∈ S.

Assume b to be the index of the particle that attained the best previous
position among all the particles in the swarm, and t to be the iteration counter.

Particle Swarm Optimization with Inertia Weights

Then, the resulting equations for the manipulation of the swarm are (Eberhart
& Shi 1998),

6.2 Stochastic Search Algorithms 99

vi(t + 1) = wvi(t) + c1r1 (p∗i (t) − xi(t)) + c2r2 (p∗b(t) − xi(t)) , (6.4)

xi(t + 1) = xi(t) + vi(t + 1), (6.5)

where i = 1, 2, . . . , s; w is a parameter called the inertia weight ; c1 and c2 are
positive constants, called the cognitive and social parameter, respectively; and
r1, r2 are vectors with components uniformly distributed in [0, 1]. All vector
operations are performed componentwise.

Usually, the components of xi and vi are bounded as follows:

xmin � xij � xmax, −vmax � vij � vmax, j = 1, . . . , n, (6.6)

where xmin and xmax define the bounds of the search space, and vmax is a
parameter that was introduced in early PSO versions to avoid swarm explo-
sion, which was caused by the lack of a mechanism for controlling the velocity’s
magnitude. Although the inertia weight is such a mechanism, empirical results
have shown that using vmax can further enhance the algorithm’s performance.
Table 6.4 summarizes the design variables of particle swarm optimization al-
gorithms.

Experimental results indicate that it is preferable to initialize the iner-
tia weight with a large value, in order to promote global exploration of the
search space, and gradually decrease it to get more refined solutions. Thus, an
initial value around 1 and a gradual decline toward 0 is considered a proper
choice for w. This scaling procedure requires the specification of the maximum
number of iterations tmax. Bartz-Beielstein et al. (2004a) illustrate a typical
implementation of this scaling procedure.

Proper fine-tuning of the parameters may result in faster convergence and
alleviation of local minima (Bartz-Beielstein et al. 2004a; Eberhart & Shi 1998;
Beielstein et al. 2002b; Bartz-Beielstein et al. 2004b). Different PSO versions,
such as PSO with constriction factor, have been proposed (Clerc & Kennedy
2002).

Table 6.4. Default algorithm design x
(0)
PSO of the PSO algorithm. Similar designs

were used in Shi & Eberhart (1999) to optimize well-known benchmark functions

Symbol Parameter Range Default Constriction

s Swarm size N 40 40
c1 Cognitive parameter R+ 2 1.494
c2 Social parameter R+ 2 1.494
wmax Starting value of the inertia weight w R+ 0.9 0.729
wscale Final value of w in percentage of wmax R+ 0.4 1.0
witerScale Percentage of iterations, for which wmax is

reduced
R+ 1.0 0.0

vmax Maximum value of the step size (velocity) R+ 100 100

100 6 Search Algorithms

Particle Swarm Optimization with Constriction Coefficient

In the constriction factor variant, Eq. (6.4) reads,

vi(t + 1) = χ [vi(t) + c1r1 (p∗i (t) − xi(t)) + c2r2 (p∗b(t) − xi(t))] , (6.7)

where χ is the constriction factor (Kennedy 2003). Equations (6.4) and (6.7)
are related.

In our experiments, the so-called canonical PSO variant proposed in Kennedy
(2003), which is the constriction variant defined by Eq. (6.7) with c1 = c2,
has been used. The corresponding parameter setting for the constriction fac-
tor variant of PSO is reported in the last column (denoted as “Constriction”)
of Table 6.4, where χ is reported in terms of its equivalent inertia weight no-
tation, for uniformity reason. Table 6.5 sumarizes the design variables of PSO
with constriction factor. Shi (2004) gives an overview of current PSO variants.

Table 6.5. Default settings of the exogenous parameters of PSO with constriction
factor. Recommendations from Clerc & Kennedy (2002)

Symbol Parameter Range Default

s Swarm size N 40
χ Constriction coefficient R+ 0.729
ϕ Multiplier for random numbers R+ 4.1
vmax Maximum value of the step size (velocity) R+ 100

6.3 Summary

The ideas presented in this chapter can be summarized as follows:

1. An algorithm design consists of one or more parameterizations of an al-
gorithm. It describes exogenous strategy parameters that have to be de-
termined before the algorithm is executed.

2. The MATLAB function fminunc, which implements a quasi-Newton
method, has been presented as an algorithm that can be run without
specifying exogenous strategy parameters.

3. Exogenous strategy parameters have been introduced for the following
stochastic and deterministic optimization algorithms:
(a) Nelder–Mead simplex algorithm
(b) Evolution strategies (two-membered and multimembered versions)
(c) Particle swarm optimization (inertia weight and constriction factor

versions)

6.4 Further Reading 101

6.4 Further Reading

Nocedal & Wright (1999) give a good introduction to numerical optimization.
Lagarias et al. (1998) discuss convergence properties of the Nelder–Mead sim-
plex method. Press et al. (1992) can be used as a cookbook, because it is
easy to read and presents many examples. Schwefel (1995) is the reference
for ES, which covers classical algorithms as well. Rudolph (1997a) provides a
deep analysis of convergence properties of evolutionary algorithms. Kennedy
& Eberhart (2001) is a standard textbook on particle swarm optimization.
Hoos & Stützle (2005) present a comprehensive overview of stochastic local
search algorithms for combinatorial optimization problems.

Part II

Results and Perspectives

7

Comparison

What is man in nature? A nothing in comparison
with the infinite, an all in comparison with the
nothing—a mean between nothing and everything.

—Blaise Pascal

In Sect. 5.1 a distinction was drawn between endogenous and exogenous algo-
rithm parameters. Exogenous parameters must be specified before the algo-
rithm is started, but endogenous parameters can evolve during the optimiza-
tion process, e.g., in self-adaptive evolution strategies (Beyer & Schwefel 2002).
Usually, the adaptation of endogenous parameters depends on exogenous pa-
rameters. By varying the values of the exogenous parameters the experimenter
can get some insight into the behavior of an algorithm.

Exogenous parameters will be referred to as design variables in the con-
text of statistical design and analysis of experiments. The parameter values
chosen for the experiments constitute an algorithm design XA as introduced
in Sect. 5.1. A design point xa ∈ DA represents one specific parameter setting.

Algorithm tuning can be understood as the process of finding the op-
timal design point x∗

a ∈ DA for a given problem design XP .

The tuning procedure leads to results that are tailored for one specific
algorithm-optimization problem combination. We cannot discuss the behavior
of an algorithm without taking the underlying problem into account. A prob-
lem being PSO easy may be ES hard, and vice versa. The interaction between
parameterizations of algorithms and problem difficulties has been discussed
by other authors, Naudts & Kallel (2000) mention “the nonsense of speak-
ing of a problem complexity without considering the parameterization of the
optimization algorithm.”

Tuning enables a fair comparison of two or more algorithms that should
be performed prior to their comparison. This should provide an equivalent
budget—for example, a number of function evaluations or an overall run
time—for each algorithm.

It is crucial to formulate the goal of the tuning experiments precisely. Tun-
ing was introduced as an optimization process. However, in many real-world
situations, it is not possible or not desired to find the optimum. Assump-
tions, or boundary conditions, that are necessary for optimization have been

106 7 Comparison

analyzed in operations research (OR). These assumptions comprise conditions
such as (1) well-defined goals, (2) stable situations and decision maker’s values,
or (3) an exhaustive number of alternatives. The review of these conditions
demonstrates that “outside the limited-context problems presented in labo-
ratory studies” (Klein 2002, p.113) only very few decision problems permit
optimization. The so-called fiction of optimization is discussed in Sect. 7.1.
Progressive deepening, a strategy used by chess grandmasters that is described
in de Groot (1978), can be used as a “vehicle for learning,” whereas decision
analysis is a vehicle for calculating. This classification resembles Mayo’s differ-
entiation between NPT and NPT∗. The final decision on whether a solution is
optimal is similar to the final decision in a statistical test. Conditions required
to make an optimal choice are considered in Sect. 7.2. This discussion is also
relevant for the specification of performance measures (PM) in evolutionary
computation. There are many different measures for the goodness of an algo-
rithm, i.e., the quality of the best solution, the percentage of runs terminated
successfully, or the number of iterations required to obtain the results.

Section 7.3 demonstrates how the classical DOE approach can be used to
tune algorithms. It consists of three steps: screening, modeling, and optimiza-
tion.

The modern DACE approach is presented in Sect. 7.4. This approach
assumes that the correlation between errors is related to the distance between
the sampling points, whereas linear regression used in DOE assumes that the
errors are independent (Jones et al. 1998). Both approaches require different
designs and pose different questions. In classical DOE, it is assumed that the
data come from sources that are disturbed by random error. Designs with
two or three levels only for each factor are used to build the corresponding
regression models. DACE methods employ designs that vary each factor over
many levels.

7.1 The Fiction of Optimization

Algorithm tuning as introduced in this chapter is an optimization problem.
Many researchers describe optimization as the attempt to select the option
with the highest expected utility (maximization).

Optimization relies on a number of very restrictive assumptions. No seri-
ous researcher would claim that these assumptions will be met in any setting,
“with the possible exception of the laboratory or casino”(Klein 2002). Un-
certainty, limited time, and restricted financial resources are only some of
the reasons that prevent the determination of an optimal solution. The con-
struction of a model that considers all these uncertainties requires a huge
complexity. The resulting model cannot be applied in practice. The reader
may reconsider the discussion from Sect. 2.1: “As far as the laws of mathe-
matics refer to reality, they are not certain; and as far as they are certain,
they do not refer to reality” (Newman 1956).

7.1 The Fiction of Optimization 107

But why, despite these obvious problems, does the mathematical formu-
lation of optimization linger as a gold standard for many researchers? Klein
notes that the agenda for researchers is dictated by the mathematical for-
mulation of expected utility: “. . . to find ways to translate decisions into the
appropriate formalism.” Deviations from this concept of maximization are
seen as defects that can be eliminated. “Because maximization is based on
mathematical proofs, these theorems act as a bedrock.”

Klein questions the value of expected utility for understanding decision
making. Instead of presenting a definition of optimization, he mentions im-
portant objections against commonly used ideas related to optimizations that
are also relevant for comparing algorithms.

1. The optimization process plays an important role, because optimization
does not only refer to the outcome. It is important to “provide accurate
and reliable inputs to the analysis.”

2. It is not obvious whether the optimization refers to the absolute best, the
best solution given the data provided, or the best solution given all data
that can be provided.

3. Stopping rule: “If we try to consider every relevant factor, we may not
finish the analysis in a finite amount of time.”

4. Suboptimal strategies are sometimes preferred in the engineering commu-
nity; they are more robust than the optimal solution.

To define a measure that judges the performance of an algorithm, certain as-
sumptions (boundary conditions) have to be fulfilled. Following Klein (2002),
we will discuss some boundary conditions that have been compiled by decision
researchers.

Boundary Conditions

The first assumption requires the goals to be well defined and specified in
quantitative terms. This assumption appears to be unproblematic, because a
performance measure can easily be defined. It is not a problem to find some
performance measure—but it is a problem to find an appropriate one. Many
performance measures can be defined, for example, the average function value
from n optimization runs, the minimum value from these runs, or the median.
These measures will be discussed in Sect. 7.2.

Other criteria demand that the decision maker’s values as well as the
optimization situation must be stable. However, the decision maker might
gain new insight into the problem during the optimization. The optimization
goal might be redefined due to this enhanced knowledge.

Another criterion demands that the decision maker is restricted to se-
lections between options. But a typical decision maker is not only passively
executing the experiments. Learning, even by accident, may occur. New ideas
for improved algorithms can come up.

108 7 Comparison

One criterion requires that the number of alternatives generated must be
exhaustive and that the options must be properly compared to each other. We
cannot test every single algorithm configuration and every possible problem
instance. Even worse, results from this overarching test would be worthless
due to the NFL theorem. However, experimental design techniques such as
DOE or DACE can be applied to setup experiments systematically and more
efficiently than the commonly used one-factor-at-a-time designs.

Furthermore, it is important that the optimal choice can be selected with-
out wasting disproportionate time and effort. This criterion is related to Fred-
kin’s paradox, which will be discussed in Chap. 8. Yet, it is not obvious how
many instances of problem P are necessary to demonstrate that algorithm
A performs better than algorithm B. Is a test suite with 500 functions more
convincing than one with 5 functions?

7.2 Performance Measures

As tuning and comparison of search algorithms can be conducted for many
reasons, different performance measures are necessary. Often, the average re-
sponse value from an algorithm run is optimized. But there are circumstances
under which it is desirable to optimize the maximum value and not the av-
erage. For example, to guarantee good service for all waiting customers in an
elevator system, the maximum waiting time has to be minimized. Otherwise,
for some systems, it is more important to minimize the variance in the response
than it is to minimize the average value. Therefore, it is a good idea to show a
graph that plots the quality of the solution versus its variance. However, pro-
viding this additional information turns simple optimization problems into
multicriteria optimization problems.

Example 7.1 (Mean, median, maximum, and minimum). Considering
the mean function values in Fig. 7.1, one might conclude that threshold selec-
tion (TS) improves the performance of the (1+1)-ES, especially for high noise
levels. Comparing the median values leads to a similar conclusion. And, the
comparison of the maximum function values shows that threshold rejection
might improve the performance, too. However, the situation changes com-
pletely if the minimum function values are compared. Surprisingly, no clear
difference between the two algorithms can be detected. �

Obviously, it is not trivial to find adequate performance measures. The perfor-
mance measure under consideration should lead to a comparison that is well-
defined, algorithmic, reproducible, and fair (Johnson 2002). Dolan & More
(2002) discuss several shortcomings of commonly used approaches, i.e., the
subjectivity related to the choice of a penalty value that is assigned to al-
gorithms that failed to solve a problem. We will consider three optimization
scenarios before we present measures that refer to efficiency and those that
refer to effectivity.

7.2 Performance Measures 109

0 10 20 30 40 50
0

50

100

150

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

0 10 20 30 40 50
0

5

10

15

20

25

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

Noise

F
un

ct
io

n
va

lu
e

 1+1 ES

 1+1 TS

Fig. 7.1. Mean, median, maximum, and minimum function values. A (1 + 1)-ES
compared to threshold selection (TS) for different noise strengths. Smaller values
are better. From left to right: Mean and median (first row), and minimum and
maximum function values (second row) from 500 runs for different noise levels

7.2.1 Scenarios

Several scenarios have been suggested in the literature: Rardin & Uzsoy (2001)
distinguish research testing of new algorithms for existing problems from the
development of the most efficient solution procedure for one problem instance.

Eiben & Smith (2003) differentiate between three types of optimization
problems:

1. Design problems create one excellent solution at least once.
2. Repetitive problems find good solutions for different problem instances.
3. Online control problems are repetitive problems that have to be solved in

real time.

Following Schwefel (1975, 1995), we will use a classification scheme that
distinguishes between effectivity and efficiency. Effectivity is related to robust-
ness and deals with the question whether the algorithm produces the desired
effect. On the other hand, the measurement can be based on efficiency: Does
the algorithm produce the desired effects without waste? The rate of conver-
gence is one typical measure to judge the efficiency of evolutionary algorithms.

110 7 Comparison

More et al. (1981) note that many tests do not place enough emphasis on
testing the robustness of optimization programs. Most of the testing proce-
dures are focused on their efficiency only. A notable exception in this context
is Schwefel (1995), who performed three test series: the first to analyze numer-
ically the rates of convergence for quadratic objective functions, the second
to test the reliability of convergence for the general nonlinear case, and the
third one to investigate the computational effort required for nonquadratic
problems. Test functions for these scenarios were presented in Sect. 4.2.

7.2.2 Effectivity or Robustness

Robustness can be defined in many ways, i.e., as a good performance over
a wide range of instances of one test problem or even over a wide range
of different test problems. Criteria based on robustness mainly consider the
best result. Robustness refers to the hardness or complexity of the problem.
Therefore, the analysis can be based on low dimensional problems. Due to
the lack of computing resources, Schwefel (1975) considered 50 problems with
dimensions from 1 to 6 only. Machine precision demands the specification
of a border fborder to distinguish solutions that have found a function value
sufficiently close to the optimum value from solutions that failed to obtain this
value. The machine precision ε is the largest positive number that 1 + ε = 1.
For a computer that supports IEEE Standard 754, double-precision ε is 2−52 ≈
2.224 × 10−16. A simplified variant of the border determination in Schwefel
(1995, p. 206), reads as follows: Let ε ∈ R+ be a real-valued positive constant,
for example, the machine precision ε. Determine

fborder =

{
max{f(x∗ + εx∗), f(x∗ − εx∗)}, if x∗ �= 0,
max{f(ε1), f(−ε1)}, otherwise.

We will list some commonly used performance measures to analyze the effec-
tivity of an algorithm in the following:

(PM-7.1) If the optimal solution is known, the percentage of run configura-
tions terminated successfully, the success ratio (SCR), can be used to
measure the performance of an algorithm. The success ratio was already
mentioned in Sect. 3.5 in the context of logistic regression models. Two
variants of this measure can be defined: it can be based on the distance of
the obtained best objective function value f̃ to the best known function
value f∗, or on the distance of the position with the obtained best ob-
jective function value x̂ to the position of best known function value x∗.
Unless otherwise explicitly stated, we will use the variant that measures
the distance between f̃ and f∗.

To measure the algorithm’s progress toward a solution, one can specify a
budget, i.e., the number of function evaluations available to an algorithm. If
the starting points were chosen randomly, or if stochastic search algorithms

7.2 Performance Measures 111

were analyzed, several solutions are obtained for one algorithm configuration.
We list only three possible ways to evaluate the results. Other measures, i.e.,
based on the median, are possible.

(PM-7.2) Schwefel (1995, p. 211) selects out of n tests the one with the best
end result. Bartz-Beielstein (2005a) introduces a measure based on boot-
strap, which reflects the goals of optimization practitioners to select the
best results from several runs and to skip the others. The related algorithm
is presented in Fig. 7.2.

(PM-7.3) The mean best function value can be defined as the average value
of the best function values found at termination for one specific run con-
figuration. This performance measure will be referred to as MBST.

(PM-7.4) The best function value found by an algorithm is recorded. By start-
ing the algorithm from a number of randomly generated initial points, a
sample is obtained. Trosset & Padula (2000) state that the construction of
a nonparametric estimate of the probability density function from which
the sample was drawn has an “enormous diagnostic value” to study the
convergence of iterative algorithms to local solutions.

7.2.3 Efficiency

The methods presented in Sect. 7.2.2 specify the available resources in ad-
vance and ask how close to the optimum an algorithm could come. Diametri-
cally opposed to these methods are those that measure the required resources.
They measure the efficiency of an algorithm, for example, the number of func-
tion evaluations or the timing of the algorithm. This difference is depicted in
Fig. 7.3.

(PM-7.5) Considering the quality of the best solution, it is a common practice
to show a graph of the solution quality versus time. Due to the randomness
of the results, it is useful to plot results from several runs. It is a good
practice to add error bars to illustrate the confidence level of data or
the deviation along a curve (Fig. 7.4) and not to show the mean values

Algorithm: Best out of n
1. Generate n results.
2. repeat k times:

(a) Select (with replacement) a set Mi of m < n values.
(b) Determine mi := min Mi.
end.

3. Calculate
Pk

i mi/k. The resulting value will be referred to as minboot.

Fig. 7.2. Algorithm to estimate the average of the best results from several runs

112 7 Comparison

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

F
un

ct
io

n
va

lu
e

f
opt

t
max

(A)

(B)

Fig. 7.3. Two diametrically opposed methods to determine the performance of an
algorithm. A measures the required resources to reach a given goal, B measures the
obtained function value that can be reached with a prespecified budget

only. Other techniques are possible, e.g., to add plots of the minimum and
maximum values.

(PM-7.6) To measure the algorithm speed, the average number of evaluations
to a solution can be used. The maximum number of evaluations can be
used for runs finding no solutions.

(PM-7.7) The run length distribution (RLD) as introduced in Hoos (1998)
provides suitable means to measure performance and to describe the qual-
itative behavior of optimization algorithms. RLDs are based on methods
proposed in Parkes & Walser (1996).

A typical run length distribution is shown in Fig. 7.5. The algorithm
to be analyzed is run n times with different seeds on a given problem
instance. The maximum number of function evaluations tmax is set to a
relatively high value. For each successful run the number of required func-
tion evaluations, trun, is recorded. If the run fails, trun is set to infinity. The
empirical cumulative distribution represents these results. Let trun(j) be
the run length for the jth successful run. Then, the empirical cumulative
distribution is defined as

Pr (trun(j) � t) =
{#j | trun(j) � t}

n
, (7.1)

7.2 Performance Measures 113

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

10
6

Iterations x 103

F
un

ct
io

n
va

lu
e

Fig. 7.4. Graph of the solution quality vs. time. Error bars added. The error bar is
a distance of one standard deviation unit above and below the curve so that each bar
is symmetric. Hence, error bars show the confidence level of data or the deviation
along a curve

where {#j | trun(j) � t} denotes the number of indices j, such that
trun(j) � t.

Exponential RLD can be used to determine whether a restart is advan-
tageous. The exponential RLD is memoryless, because the probability of
finding a solution within an interval [t, t + k] does not depend on the ac-
tual iteration i. If the RLD is exponential, the number of random restarts
does not affect the probability of finding a solution with a given interval.
Otherwise, if the RLD is not exponential, there may exist some iteration
for which a restart is beneficial. The reader is referred to the discussion
in Chiarandini & Stützle (2002).

(PM-7.8) Efficiency rates measure progress from the starting point x(0) as op-
posed to convergence rates that use a point in the vicinity of the optimum
x∗. Hillstrom (1977) defines the following efficiency measure:

MTER = ln(|f (0) − f∗|/|f̂ − f∗|)/T, (7.2)

where T is an estimate of the elapsed time in centiseconds, and where
f (0), f∗, and f̂ are the initial, known, and final minimum values of the
objective function. The difference |f̂ − f∗| is bounded by the machine
precision (Hillstrom 1977). Thus, Hillstrom’s definition is not machine-
independent.

(PM-7.9) A measure to compute the quality–effort relationship can be defined
as the ratio r0.05 = t0.05/tbest, where t0.05 denotes the time to produce a
solution within 5 % of the best function value found, and tbest is the time

114 7 Comparison

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Empirical CDF

Function evaluations

F
(X

)

 default

 tuned

 tuned +
 rescaled

Fig. 7.5. Run length distributions of the default, the tuned, and the tuned and
rescaled inertia variant of the particle swarm optimization. The arrow indicates
that 70% of the runs of the tuned algorithm can detect the optimum with less than
5000 function evaluations. After 15,000 function evaluations nearly every run is able
to detect the optimum. The witerScale scheme is modified in the tuned and rescaled
variant. It outperforms the other algorithms if the number of function evaluations
is low. However, increasing the number of function evaluations from 5000 to 15,000
does not improve the success ratio of the tuned and rescaled PSO. The default
configuration was able to complete only 80% of the runs after 20,000 function eval-
uations. RLDs provide good means to determine the maximum number of function
evaluations for a comparison

to produce that best value (Barr et al. 1995). Run length distributions
provide a graphical presentation of this relationship.

Example 7.2 (Quality–effort relationship). If an algorithm A requires
t∗(A) = 30, 000 function evaluations to produce the best solution f∗(A) = 10
and t0.05(A) = 10, 000 evaluations to produce a solution that is smaller than
f0.05(A) = 10.5, than its quality-effort relationship is 30,000/10,000 = 3. �

Several measures have been defined for evolutionary algorithms. These mea-
sures have been introduced to measure the search progress, and not the con-
vergence properties of an algorithm. For example, the corridor model with
objective function

f(x) = −
d∑

i=1

xi (7.3)

7.2 Performance Measures 115

and constraints as defined in Schwefel’s Problem 3.8 (Schwefel 1995, p. 364)
has its minimum at infinity. It was used to analyze “the cost, not of reaching a
given approximation to an objective, but of covering a given distance along the
corridor axis” (Schwefel 1995, p. 365). In particular, dynamic environments
require algorithms that can follow the moving optimum, convergence is ipso
facto impossible. Additionally, these measures consider that the best solution
found during the complete run may not belong to the final population, for
example, in comma-strategies:

(PM-7.10) Schwefel (1988) defines the convergence velocity c as a progress
measure of a single run as the logarithmic square root of the ratio of the
best function value in the beginning f (0) and after g generations f (g):

c(g) = log(
√

f (0)/f (g)).

This measure is related to the efficiency measure MTER defined above in
Eq. (7.2). Kursawe (1999) uses the normalized convergence velocity:

dc(g)/g,

where d denotes the problem dimension.
(PM-7.11) Rudolph (1997a) analyzes the first hitting time of an ε-environment

of the global optimum of the objective function f∗.
(PM-7.12) Arnold & Beyer (2003) define the efficiency of a search algorithm

as the ratio of the expected one-generation gain to the average number of
objective function evaluations per generation.

Furthermore, we present three performance measures that are commonly used
for evolutionary algorithms:

(PM-7.13) The quality gain Q measures the expected change of the function
value from generation g to g + 1. It is defined as

Q = E

[
1/s

s∑
i=1

f
(g+1)
i − 1/s

s∑
i=1

f
(g)
i

]
, (7.4)

where s denotes the population size.
(PM-7.14) The progress rate ϕ is a distance measure in the parameter space

to measure the expected change in the distance of the parent population to
the optimum x∗ from generation g to g + 1. This measure will be referred
to as PRATE.

(PM-7.15) The success rate sr is the ratio of the number of the successes to the
total number of trials, i.e., mutations. It can be used as local performance
measure from generation g to g +1. Note, the success rate was introduced
in Sect. 6.2 to define the 1/5 success rule for evolution strategies.

116 7 Comparison

The reader is referred to Beyer (2001) for a comprehensive discussion of these
measures.

The performance measures considered so far are based on one problem
instance only. The following measures compare i different problem instances
on j different algorithm instances (Table 7.1).

(PM-7.16) For the ith problem instance and the jth algorithm, we can define

ti,j = time required to solve problem i by algorithm j. (7.5)

The distribution function of a performance metric, the performance pro-
file, shows important performance characteristics. It can be used to deter-
mine the computational effort (Dolan & More 2002; Bussieck et al. 2003).
The performance ratio is defined as

ri,j =
ti,j

min{ti,j : 1 ≤ j ≤ nj} , (7.6)

where nj denotes the number of algorithms and ti,j is defined as in
Eq. (7.5). The performance ratio ri,j compares the performance on prob-
lem i by algorithm j with the best performance by any algorithm on this
problem. We can define

ρj(r) =
1

nj
#{i : ri,j ≤ r}, (7.7)

the cumulative distribution function (CDF) for the performance ratio.

Example 7.3 (Performance ratio). Algorithm A1 has the performance
ratio on problem instance 1 from Table 7.1:

r1,1 =
10

min{10, 12, 5} = 2.

�

Example 7.4 (CDF for the performance ratio). Values of the cu-
mulative distribution function for the performance ratio ρj(r) can be de-
termined as follows:

Table 7.1. Test and algorithm instances. The entries in the ith row and jth column
present ti,j, the number of function evaluations in units of 103 required to solve
problem instance i with algorithm j as defined in Eq. (7.5). Smaller values are
better

Algorithm A1 Algorithm A2 Algorithm A3

Problem 1 10 12 5
Problem 2 10 13 30
Problem 3 20 40 100

7.2 Performance Measures 117

ρ1(1) = 2/3, because there are 2 problem instances with ri,1 ≤ 1,

ρ1(2) = 1, because there are 3 problem instances with ri,1 ≤ 2, and

ρ1(3) = 1, because there are 3 problem instances with ri,1 ≤ 3.

The situation from Table 7.2 is depicted in Fig. 7.6. �

Table 7.2. Performance ratios rij for the values from Table 7.1. Smaller values are
better

Algorithm A1 Algorithm A2 Algorithm A3

Problem 1 2 2.4 1
Problem 2 1 1.3 3
Problem 3 1 2 5

1 2 3
0

0.2

0.4

0.6

0.8

1

r

ρ(
r)

 A
1

 A
2

 A
3

Fig. 7.6. Cumulative distribution func-
tion for the performance ratio ρj(r). Val-
ues taken from Table 7.2. Algorithm A1

performs best, whereas the performances
of A2 and A3 cannot be distinguished.
Note, larger values are better in this
graph (in contrast to the values in Ta-
bles 7.1 and 7.2)

(PM-7.17) A common practice to compare global optimization algorithms
(solvers) is to sort the problem instances by the time taken by a reference
solver j0: ti := ti,(j0). Then for every solver i the time taken ti,j is plotted
against this ordered sequence of problem instances. Instances for which
the optimum was not found by the solver within the allotted time tmax

get a dummy time above the timeout value. The successful completion of
the optimization task can be assessed directly. How the performance of a
solver scales with the problem dimension can only be seen indirectly, since
the values refer to the ordering of the problem instances induced by the
reference solver (Neumaier et al. 2005).

(PM-7.18) Schwefel (1995, p. 180) suggests the following procedure to test the
theoretical predictions of convergence rates: Test after each generation g,
if the interval of uncertainty of the variables has been reduced by at least
90%:

|x(g)
i − x∗

i | ≤
1

10
|x(0)

i − x∗
i |, for i = 1, . . . , d, (7.8)

118 7 Comparison

where x∗ denotes the optimum and the values xi were initialized as in
Eq. (5.6) in Example 5.5. The number of function calls can be displayed
as a function of the numbers of parameters (dimension) on a log–log scale
as shown in Fig. 7.7.

Fig. 7.7. Average run length vs.
problem dimension. The number of
function calls is displayed as a func-
tion of the numbers of parameters (di-
mension) on a log–log scale. A similar
presentation was chosen in Schwefel
(1995) to test convergence rates for a
quadratic test function. The figure de-
picts data from an analysis of a parti-
cle swarm optimization on the sphere
function 10

0
10

1
10

2
10

2

10
3

10
4

10
5

Dimension

A
ve

ra
ge

 r
un

 le
ng

th

Since run times depend on the computer system, measures for computational
effort might be advantageous: Counting operations, especially for major sub-
tasks such as function calls, can explicitly be mentioned in this context. Fi-
nally, we note that Barr & Hickman (1993) discuss performance measures for
parallel algorithms.

7.2.4 How to Determine the Maximum Number of Iterations

Measures based on effectivity often require the specification of tmax, which
is the maximum number of iterations before the run is started. A wrong
specification of the tmax value may lead to a bad experimental design. Test
problems that are too easy may cause ceiling effects. If algorithms A and B
achieve the maximum level of performance (or close to it), the hypothesis
“performance(A) ≥ performance(B)” should not be confirmed (Cohen 1995).
Floor effects describe the same phenomenon on the opposite side of the per-
formance scale: The test problem is too hard, so nearly no algorithm can solve
it correctly.

Example 7.5 (Floor effects). If the number of function evaluations is cho-
sen too small, floor effects can occur. Consider Rosenbrock’s function, the

starting point x
(0)
i = (106, 106)T , and a budget of 10 function evaluations

only. �

Example 7.6 (Ceiling effects). The randomly generated instances of the
TSP as described in Problem 4.1 can produce ceiling effects, because any
random guess produces a good solution. �

7.3 The Classical DOE Approach 119

Run length distributions as presented in Sect. 7.2.3 can be used to determine
an appropriate value for tmax.

Schaffer et al. (1989) propose a technique to determine the total number of
iterations tmax and to prevent ceiling effects: The number k belongs to the set
N if at least 10% of the algorithm design configurations xa ∈ DA located the
known best objective function value f∗ at least on average every second time
after k iterations. The number of function evaluations at which to compare
different algorithm designs is chosen as Ntot = min{N}.
Example 7.7 (Schaffer’s technique to avoid ceiling effects). Based on
the data from Table 7.1, we can see that algorithm 1 was able to locate
the optimum at least every second time after 10,000 function evaluations, al-
gorithms 2 and 3 required 13,000 and 30,000 evaluations, respectively, and
N = {10, 000; 13, 000; 30, 000}. A choice of k = 10, 000 as the minimum num-
ber of function evaluations guarantees that at least 10% of the algorithms
locate the optimum after k iterations. At least 10% is in our case one algo-
rithm only, because three algorithms are considered. �

7.3 The Classical DOE Approach

Rather than detail the classical DOE procedure here, since it is fully outlined
in Bartz-Beielstein (2003), we give an overview and make some comments that
reflect further experiences that we have observed in the meantime.

7.3.1 A Three-Stage Approach

In classical DOE the three-stage approach of screening, modeling, and opti-
mization is proposed:

(DOE-1) Screening. Consider an algorithm with k exogenous strategy param-
eters, for example, an evolution strategy with k = 9 parameters. Screening
analyzes the main effects only. Possible interactions will be investigated
later. Therefore, we recommend to use fractional-factorial 2k−p designs
with 1 ≤ p < k. These are orthogonal designs that require a moderate
number of experiments. Due to the orthogonality of these designs, the
regression coefficients can be determined independently. If we cannot dif-
ferentiate between two effects, these effects are called confounded . A 2k−p

design is of resolution R if no q-factor effect is confounded with another
effect that has less than R − q factors (Box et al. 1978). Roman numer-
als denote the corresponding design resolution. Our first experiments are
based on resolution III designs. These designs ensure that no main ef-
fect is confounded with any other main effect, but main effects can be
confounded with two-factor interactions. Fractional-factorial 2k−p designs
provide unbiased estimators of the regression coefficients of a first-order
model and can easily be augmented to designs that enable the estimation

120 7 Comparison

of a second-order regression model that will be used during optimization,
the third stage of the classical DOE approach.

(DOE-2) Modeling. First- or second-order interactions can be taken into ac-
count, because only the important factors that have been detected during
the screening phase will be analyzed further. At this stage, resolution IV
or resolution V designs are recommended. Half-normal plots can be used
to display the main effects and interactions. A linear approximation may
be valid in a subdomain of the full experimental area. Response surface
methodology (RSM) is a collection of mathematical and statistical tools
to model, analyze, and optimize problems where the response of interest
is influenced by several variables (Montgomery 2001). In RSM, we deter-
mine the direction of improvement using the “path of the steepest descent”
(minimization problem) based on the estimated first-order model (Kleij-
nen & Van Groenendaal 1992). If no further improvement along the path
of the steepest descent is possible, we can explore the area by fitting a
local first-order model and obtain a new direction for the steepest de-
scent. We can repeat this step until the expected optimum area is found
(if the response surface is unimodal). There the linear model is inadequate
and shows significant lack-of-fit and we cannot determine a direction of
improved response in this case.

(DOE-3) Optimization. Central composite designs that can be complemented
with additional axial runs are often used at this experimental stage. They
can be combined with response surface methods and require a relatively
high number of runs. We apply the standard techniques from regression
analysis for metamodel validation (Draper & Smith 1998). A second-order
model can be fitted in the expected optimum area. The optimal values are
estimated by taking the derivatives of the second-order regression model.
We combine in our approach DOE and RSM techniques that are adapted
to the special needs and restrictions of the optimization task.

Example 7.8 (23−1 designs). Consider a design for three factors A, B, and
C with two levels each. One-half fraction of the full factorial 23 design is called
a 23−1 fractional-factorial design. Plus and minus signs can be used to denote
high and low factor levels, respectively. If we define the multiplication of two
factors by their associated levels as ++ = −− =: + and +− = −+ =: −, then
one-half fraction of the design is given by selecting only those combinations
with ABC = +, for example: A = −, B = −, and C = +. This design is a
resolution III design. �

7.3.2 Tuning an Evolution Strategy

Bartz-Beielstein (2003) describes a situation in which only a few preliminary
experiments can be performed to find a suitable ES parameter setting. To
start, an experimental region (design space) has to be determined. The design
space is defined as

7.3 The Classical DOE Approach 121

I := [a1, b1] × . . . × [ad, bd] ⊆ R
d, (7.9)

with the center point zi = (ai + bi)/2, i, . . . , d, as depicted in Fig. 5.1. The
optimization response is approximated in the experimental region by the first-
order regression model, cf. Eq. (3.12). The range of a coded or standardized
variable x is bounded by [−1, 1]. The range [a, b] of the corresponding original
(natural) variable z can be mapped by a linear transformation to [−1, 1].

An ES as presented in Beyer & Schwefel (2002) has at least nine different
exogenous parameters. To model the ES performance, four quantitative vari-
ables (μ, ν, σ(0), cτ) and five qualitative variables (rx, rσ, κ, nσ, ρ) have to be
considered. The number of offspring λ can be determined from the size of the
population μ and value of the selective pressure ν = λ/μ. The inputs μ and
ν are treated as quantitative factors, their values are rounded to the nearest
whole number to get a set of working parameters. The maximum lifespan κ is
treated as a qualitative factor because only comma and plus selection schemes
have been analyzed.

Instead of using a full factorial 2k design that would require 512 opti-
mization runs, a 29−5

III fractional-factorial design, which requires only 16 op-
timization runs, was chosen. Box et al. (1978) give rules for constructing
fractional-factorial designs. First, the experimental region is chosen. The in-
terval [−1Level, + 1Level] from Table 7.3 contains values that were proposed
in Bäck (1996), cf. Table 6.3.

Example 7.9 (Experimental region). We have chosen the experimental
region I1 = [10, 20] for μ, because it includes the recommended value μ = 15.
�

Table 7.4 shows the 16 run configurations.

Table 7.3. Evolution strategy: symbols and levels. Values chosen with respect to
the default settings from Table 6.3

Symbol Parameter Variable Type −1 +1

μ Number of parent individuals x1 Quant. 10 20
ν Offspring–parent ratio x2 Quant. 5 10

σ(0) Initial standard deviations x3 Quant. 1 5
nσ Number of standard deviations x4 Qual. 1 12
cτ Multiplier for mutation parameters x5 Quant. 1 2
ρ Mixing number x6 Qual. b m
rx Recombination for object variables x7 Qual. ri rd

rσ Recombination for strategy variables x8 Qual. ri rd

κ Maximum life span x9 Qual. −1 1

122 7 Comparison

Table 7.4. Fractional-factorial design for evolution strategies. Symbols were intro-
duced in Table 6.3

μ ν σ(0) nσ cτ ρ rx rσ κ

1 10 5 1 1 1 2 i i 1
2 20 5 1 1 2 2 d d -1
3 10 10 1 1 2 10 i d -1
4 20 10 1 1 1 20 d i 1
5 10 5 5 1 2 10 d i -1
6 20 5 5 1 1 20 i d 1
7 10 10 5 1 1 2 d d 1
8 20 10 5 1 2 2 i i -1
9 10 5 1 12 1 10 d d -1

10 20 5 1 12 2 20 i i 1
11 10 10 1 12 2 2 d i 1
12 20 10 1 12 1 2 i d -1
13 10 5 5 12 2 2 d d 1
14 20 5 5 12 1 2 i i -1
15 10 10 5 12 1 10 d i -1
16 20 10 5 12 2 20 i d 1

A First Look at the Data

Box-plots, histograms, or scatterplots can be used to detect outliers easily. As
randomness is replaced by pseudorandomness, we do not recommend simply
excluding outliers from the analysis. Removing potential outliers may destroy
valuable information. Instead, we recommend to look at the raw data that
are tabulated and sorted. Specifying a better suited experimental region for
factors that arouse suspicion might prevent outliers.

Example 7.10 (Outliers and experimental region). We can conclude
from Table 7.5 that the choice of a value of 20 as the second level for factor
A should be reconsidered. �

Regression Analysis

Regression analysis and stepwise model selection by Akaike’s information cri-
terion have been performed for the coded variables xi. To conduct the exper-
iments, these values have be retransformed to the natural variables zi. Before
we start the search along the path of the steepest descent, the adequacy of
the regression model is tested, and a check for interactions is performed. Re-
gression analysis reveals that only three of the nine factors are important: (1)
The initial sigma value σ(0), (2) the population size μ, (3) and the selective
pressure ν. Plus and comma strategies are tested in parallel, because they
perform similarly at this stage of experimentation.

7.3 The Classical DOE Approach 123

Starting from the center point we perform a line search in the direction
of the steepest descent that is given by −(β̂1, . . . , β̂k). To determine the step
sizes Δxi for the line search, we select the variable xj that has the largest

absolute regression coefficient: j = arg maxi |β̂i|. The increment in the other
variables is

Δxi = −β̂i/(|β̂j|/Δxj), i = 1, 2, . . . , k; i �= j.

The corresponding numerical values are shown in Table 7.6. The qualitative
factors have to be treated separately, because a line search cannot be per-
formed for qualitative factors such as the recombination operator. For qual-
itative factors with significant effects the “better” levels were chosen. The
values of qualitative factors with small effects on the response were chosen
rather subjectively. Before the initial sigma value σ(0) reaches the boundaries
of the feasible region, the search is stopped. This value may lie outside the
experimental region, but has to be a feasible value for the algorithm. A sec-

Table 7.5. Tabulated raw data. The function value Y is shown in the first column.
Factor A produces outliers, if its high level is chosen

Y A B C . . .

0.5 5 5 1 . . .
0.6 5 10 1 . . .

0.61 5 5 5 . . .
0.9 5 10 5 . . .

...
...

...
... . . .

0.4 10 10 5 . . .
259.2 20 10 1 . . .
277.1 20 5 5 . . .
297.3 20 5 1 . . .
433.6 20 10 5 . . .

Table 7.6. Steepest descent; 12-dimensional sphere function. The line search is
stopped after 7 steps to avoid negative σ(0) values (Bartz-Beielstein 2003)

σ(0) ν μ σ(0) ν μ Mean Median
Steps Coded Coded Coded Original Original Original response response
Δ x1 x2 x3 z1 z2 z3 log(y) log(y)

0 0 0 3.0 8 15 −1.784 −1.856
Δ −0.2 −0.15 −0.1 2.6 7 14 −3.169 −3.577
2Δ −0.4 −0.3 −0.2 2.2 7 14 −3.184 −3.531
3Δ −0.6 −0.45 −0.3 1.8 6 14 −4.231 −4.435
4Δ −0.8 −0.6 −0.4 1.4 6 13 −5.018 −5.339
5Δ −1.0 −0.75 −0.5 1.0 6 12 −6.445 −6.497
6Δ −1.2 −0.9 −0.6 0.6 5 12 −7.451 −8.298
7Δ −1.35 −1.05 −0.7 0.2 5 12 −8.359 −8.915

124 7 Comparison

ond algorithm design based on the improved setting from the line search was
created. The regression analysis shows that the plus selection scheme is ad-
vantageous in this case. Therefore, the experiments with the comma strategy,
which have been run in parallel, are stopped. Effects caused by the parameters
μ, ν, and σ(0) are statistically significant and have to be considered further. As
only three of the nine parameters remain, a more complex algorithm design
has been chosen.

Central Composite Designs

A central composite design combines a 2k factorial design with additional runs,
see Fig. 5.1. We can conclude from the regression analysis that was based on
a 23 central composite design that a further decrease of the population size
and of the selective pressure might be beneficial. The initial step size σ(0) has
no significant effect any more. This result corresponds with the conclusions
that might be drawn from the tree-based regression analysis (not shown here).
Instead of performing a second line search, we use response surface methods to
visualize the region of the local optimum. Data generated from a CCD with
axial runs can be used to generate a surface plot. A numerical comparison
of the function values obtained from the first and the improved algorithm
design reveals a significant improvement (Table 7.7). We have found a better

Table 7.7. Evolution strategy. Comparison of the function values from the first and
the improved algorithm design

Design Min. 1st Qu. Median Mean 3rd Qu. Max.

x
(0)
ES 0.01 0.04 0.05 0.07 0.09 0.20

x∗

ES 5.32e − 64 1.16e − 59 1.25e − 57 6.47e − 51 7.54e − 56 5.17e − 49

algorithm design, x∗
ES, that improves the performance of the “standard” ES

presented in Bäck (1996) for this specific problem. This result is not surprising,
since this standard was chosen as a “good” parameterization on average for
many problems and not especially for the sphere model. The result found so
far does not justify the conclusion that this design is optimal. Our intention is
to give the optimization practitioner a framework on how to set up algorithms
with working parameter configurations. Further optimization of this setting
is possible, but this is beyond the intention of this study.

As noted in Sect. 5.6, the assumption of a linear model for the analysis of
computer algorithms is highly speculative. The applicability of methods from
computational statistics that are not restricted to this assumption is analyzed
in the following section.

7.4 Design and Analysis of Computer Experiments 125

7.4 Design and Analysis of Computer Experiments

The term computational statistics subsumes computationally intensive meth-
ods (Gentle et al. 2004b). Statistical methods, such as experimental design
techniques and regression analysis, can be used to analyze the experimental
setting of algorithms on specific test problems. One important goal in the
analysis of search algorithms is to find variables that have a significant influ-
ence on the algorithm’s performance. Performance measures were discussed
in Sect. 7.2, i.e., performance can be quantitatively defined as the average
obtained function value in a number (e.g., 50) of independent experiments.
This measure was also used in Shi & Eberhart (1999). Questions like “How
does a variation of the swarm size influence the algorithm’s performance?” or
“Are there any interactions between swarm size and the value of the inertia
weight?” are important research questions that provide an understanding of
the fundamental principles of stochastic search algorithms such as PSO.

The approach presented in this section combines DOE, CART, and
DACE techniques. Since DACE was introduced for deterministic computer
experiments, repeated runs are necessary to apply this technique to stochastic
search algorithms.

In the following, the specification of the DACE process model that will be
used later to analyze our experiments is described. This specification is similar
to the selection of a linear or quadratic regression model in classical regression.
DACE provides methods to predict unknown values of a stochastic process,
and it can be applied to interpolate observations from computationally ex-
pensive simulations. Furthermore, it enables the estimation of the prediction
error of an untried point, or the mean squared error of the predictor.

Sequential Designs Based on DACE

Prior to the execution of experiments with an algorithm, the experimenter has
to specify suitable parameter settings for the algorithm, i.e., a design point
xa from an algorithm design XA.

Often, designs that use sequential sampling are more efficient than designs

with fixed sample sizes. First, an initial design X
(0)
A is specified. Information

obtained in the first runs can be used for the determination of the second
design X

(1)
A in order to choose new design points more efficiently.

Sequential sampling approaches with adaptation have been proposed for
DACE. For example, in Sacks et al. (1989) sequential sampling approaches
with and without adaptation were classified to the existing metamodel. We
will present a sequential approach that is based on the expected improvement.
In Santner et al. (2003, p. 178) a heuristic algorithm for unconstrained global
minimization problems is presented. Consider one problem design xp ∈ DP .
Let yk

min denote the smallest known minimum value after k runs of the al-
gorithm, y(x) be the algorithm’s response, i.e., the realization of Y (x) in

126 7 Comparison

Eq. (3.17), and let xa represent a specific design point from the algorithm
design XA. Then the improvement is defined as

improvement at xa =

{
yn
min − y(xa), yn

min − y(xa) > 0,
0, otherwise,

for xa ∈ DA, cf. Eq. (5.5). Combining this sequential approach with classical
and further modern statistical methods (e.g., regression trees and bootstrap-
ping) leads to the sequential parameter optimization that will be introduced
in the following section.

7.5 Sequential Parameter Optimization

The sequential parameter optimization (SPO) method, which is developed in
this section, describes an implementable but heuristic method.

During the preexperimental planning phase (S-1) the experimenter defines
exactly what is to be studied and how the data are to be collected. The recogni-
tion and statement of the problem seems to be a rather obvious task. However,
in practice, it is not simple to formulate a generally accepted goal. Discovery,
comparison, conjecture and robustness as introduced in Sect. 2.1.2 are only
four possible scientific goals of an experiment. Furthermore, the experimenter
should take the boundary conditions discussed in Sect. 7.1 into account. Sta-
tistical methods like run length distributions provide suitable means to mea-
sure the performance and describe the qualitative behavior of optimization
algorithms.

In step (S-2), the experimental goal should be formulated as a scientific
claim, e.g., “Algorithm A, which uses a swarm size s, that is proportional to
the problem dimension d outperforms algorithms that use a constant swarm
size.”

A statistical hypothesis, such as “There is no difference in means compar-
ing the performance of the two competing algorithms,” is formulated in the
step (S-3) that follows.

Step (S-4) requires at least the specification of

(a) an optimization problem
(b) constraints (for example, the maximum number of function evalua-

tions)
(c) an initialization method
(d) a termination method
(e) an algorithm, and its important factors
(f) an initial experimental design
(g) a measure to judge the performance

Regarding (c), several methods have been used for the initialization of the
population in population-based algorithms, or the determination of an ini-
tial point, x(0), in algorithms that use a single search point. For example, an

7.5 Sequential Parameter Optimization 127

asymmetric initialization scheme was used in Shi & Eberhart (1999), where

the initial positions of the particles, x
(0)
i , i = 1, . . . , s, were chosen uniformly

distributed in the range [15, 30]d. Initialization method DETMOD, which
uses deterministically modified starting values, was proposed in More et al.
(1981).
An algorithm terminates if the problem was solved (XSOL), the algorithm
has stalled (STAL), or the resources, e.g., the maximum number of function
evaluations, tmax, are exhausted (EXH). Note that initialization and termi-
nation methods were discussed in Sect. 5.5.

The corresponding problem design XP that summarizes the information
from (a) to (d) for our experiments with PSO is reported in Table 7.8, while
the algorithm design XA, which represents (e), is reported in Table 7.9 . The
experimental goal of the sequential approach presented here can be character-
ized as the determination of an optimal (improved) algorithm design point,

x∗
PSO for a given problem design point x

(0)
PSO.

At each stage, Latin hypercube designs are used. Aslett et al. (1998) re-
port that experience with the stochastic process model had indicated that 10
times the expected number of algorithm design variables is often an adequate
number of runs for the initial LHD.

Example 7.11 (LHD for the PSO constriction variant). The constric-
tion factor variant of PSO requires the determination of four exogenous
strategy parameters, namely the swarm size s, constriction factor χ, param-

Table 7.8. Problem design x
(1)
rosen for the experiments performed in this chapter. The

experiment’s name, the number of runs n, the maximum number of function eval-
uations tmax, the problem’s dimension d, the initialization method, the termination
criterion, the lower and upper bounds, xl and xu, respectively, for the initialization
of the object variables x

(0)
i , as well as the optimization problem and the performance

measure (PM) are reported

Design Init. Term. PM n tmax d xl xu

x
(1)
rosen NUNIRND EXH MBST 50 2500 10 15 30

Table 7.9. PSO: Algorithm designs for the inertia weight PSO variant. They cor-
respond to the experiment x

(1)
rosen of Table 7.8, which optimizes the 10-dimensional

Rosenbrock function. x
(l)
PSO and x

(u)
PSO denote the lower and upper bounds to gener-

ate the LHD, respectively, and x∗

PSO denotes the parameter settings of the improved
design that was found by the sequential approach

Design s c1 c2 wmax wscale witerScale vmax

x
(l)
PSO 5 1.0 1.0 0.7 0.2 0.5 10

x
(u)
PSO 100 2.5 2.5 0.99 0.5 1 750

x∗

PSO 21 2.25 1.75 0.79 0.28 0.94 11.05

128 7 Comparison

eter ϕ = c1 + c2, and the maximum velocity vmax. Thus, an LHD with at
least m = 15 design points was chosen. This is the minimum number of de-
sign points to fit a DACE model that consists of a second-order polynomial
regression model and a Gaussian correlation function. The former requires
1 +

∑4
i=1 i = 11 design points, while the latter requires 4 design points. Note

that for m = 15 there are no degrees of freedom left to estimate the mean
squared error of the predictor (Santner et al. 2003). �

After that, the experiment is run (S-5). Preliminary (pilot) runs can give a
rough estimate of the experimental error, run times, and the consistency of
the experimental design. Again, RLDs can be very useful. Since we consider
probabilistic search algorithms in our investigation, design points must be
evaluated several times.

The experimental results provide the base for modeling and prediction in
step (S-6). The model is fitted and a predictor is obtained for each response.

The model is evaluated in step (S-7). Several visualization techniques can
be applied. Simple graphical methods from exploratory data analysis are often
helpful. Histograms and scatterplots can be used to detect outliers. If the
initial ranges for the designs were chosen improperly (e.g., very wide initial
ranges), visualization of the predictor can guide the choice of more suitable
(narrower) ranges in the next stage. Several techniques to assess the validity
of the model have been proposed.

Additional graphical methods can be used to visualize the effects of fac-
tors and their interactions on the predictors. The three-dimensional visual-
izations depicted in Fig. 7.9, produced with the DACE toolbox (Lophaven
et al. 2002b), have proved to be very useful. The predicted values can be plot-
ted to support the numerical analysis, and the MSE of prediction is used to
asses its accuracy. We explicitly note here that statistical models can provide
only guidelines for further experiments. They do not prove that a factor has
a particular effect.

If the predicted values are not accurate, the experimental setup has to
be reconsidered. This includes the scientific goal, the ranges of the design
variables, and the statistical model (Eqs. (3.12) and (3.17)). New design points
in promising subregions of the search space can be determined (S-8) if further
experiments are necessary.

Thus, a termination criterion has to be tested (S-9). If it is not fulfilled,
based on the expected improvement defined in Eq. (5.5) new candidate de-
sign points can be generated (S-10). A new design point is selected if there
is a high probability that the predicted output is below the current observed
minimum and/or there is a large uncertainty in the predicted output. Oth-
erwise, if the termination criterion is true, and the obtained solution is good
enough, the final statistical evaluation (S-11) that summarizes the results is
performed. A comparison between the first and the improved configuration
should be performed. Techniques from exploratory data analysis can com-
plement the analysis at this stage. Besides an investigation of the numerical

7.6 Experimental Results 129

values, such as mean, median, minimum, maximum, minboot and standard
deviation, graphical presentations such as boxplots, histograms, and RLDs
can be used to support the final statistical decision (e.g., see Fig. 7.11).

Finally, we have to decide whether the result is scientifically important
(S-12), since the difference, although statistically significant, can be scientif-
ically meaningless. As discussed in Sect. 2.5, an objective interpretation of
rejecting or accepting the hypothesis from (S-2) should be presented here.
Consequences that arise from this decision are discussed as well. The exper-
imenter’s skill plays an important role at this stage. The experimental setup
should be reconsidered at this stage and questions like “Have suitable test
functions or performance measures been chosen?” or “Did floor or ceiling ef-
fects occur?” must be answered. Test problems that are too easy may cause
such ceiling effects, cf. the discussion in Sect. 7.2.4.

7.6 Experimental Results

Initially, we investigated Rosenbrock’s function. This is a simple and well-
known test function to gain an intuition regarding the functioning of the
proposed technique (Rosenbrock 1960). In the next step of our analysis, the
S-ring model was considered. We provide a demonstration of the sequential
approach by conducting a brief investigation for the Rosenbrock function,
using the two variants of PSO as well as the Nelder–Mead simplex algorithm.

Experimental designs and results of PSO or evolutionary algorithms pre-
sented in empirical studies are sometimes based on a huge number of function
evaluations (tmax > 105), even for simple test functions. Our goal is to demon-
strate how statistical design methods, e.g., DACE, can reduce this number
significantly. The proposed approach is thoroughly analyzed for the inertia
weight variant of PSO.

7.6.1 Optimizing the PSO Inertia Weight Variant

This example describes in detail how to tune the exogenous parameters of
PSO. It extends the approach presented in Bartz-Beielstein et al. (2004b).
Experimental designs and results presented in Shi & Eberhart (1999) have
been chosen as a starting point for our analysis.

(S-1) Preexperimental planning. Preexperimental tests to explore the opti-
mization potential supported the assumption that tuning might improve
the algorithm’s performance. RLD revealed that there exists a configura-
tion that was able to complete the run successfully using less than 8000
function evaluations, for nearly 80% of the cases. This was less than half
the number of function evaluations used in the reference study, justifying
the usefulness of the analysis.

130 7 Comparison

(S-2) Scientific claim. There exists a parameterization (design point x∗
PSO ∈

DA) of PSO that improves its performance significantly for one given
optimization problem xp ∈ DP .

(S-3) Statistical hypothesis. PSO with the parameterization x∗
PSO outper-

forms PSO with the default parameterization x
(0)
PSO, which is used in Shi

& Eberhart (1999).
(S-4) Specification. Table 7.10 presents numerical results from the optimiza-

tion process. Each line in Table 7.10 corresponds to one optimization step
in the sequential approach. At each step, two new design points are gen-
erated and the best one is reevaluated. This is similar to the selection
procedure in (1 + 2)-evolution strategies. The number of repeat runs n
of the algorithm design points is increased (doubled), if a design has per-
formed best two or more times. A starting value of n = 2 was chosen. For
example, design point 14 performs best at iteration 1 and iteration 3. It
has been evaluated 4 times, therefore the number of evaluations is set to
4 for every newly generated design. This provides a fair comparison and
reduces the risk of incorrectly selecting a worse design.

Table 7.10. Problem design x
(1)
rosen. Inertia weight PSO optimizing the 10-

dimensional Rosenbrock function. Each row represents the best algorithm design
at the corresponding tuning stage. Note that function values (reported in the second
column) can worsen (increase) although the design is improved. This happens as a
result of the noise in the results, y. The probability that a seemingly good function
value that is, in fact, worse might occur decreases during the sequential procedure,
because the number of reevaluations is increased. The number of repeats n, is dou-
bled if a configuration performs best twice. The corresponding configurations are
marked with an asterisk

Conf y s c1 c2 wmax wScale wIterScale vmax

14 6.616 26 1.457 1.989 0.713 0.482 0.684 477.874
19 18.060 39 1.302 1.843 0.871 0.273 0.831 289.922
14* 71.402 26 1.457 1.988 0.713 0.482 0.684 477.874
3 78.048 30 2.220 1.263 0.944 0.290 0.894 237.343
3* 75.615 30 2.220 1.263 0.944 0.290 0.894 237.343
35 91.094 18 1.842 1.699 0.959 0.257 0.849 95.139
43 91.544 21 1.055 1.251 0.937 0.498 0.593 681.092
52 93.754 11 1.581 2.419 0.729 0.470 0.545 98.927
20 93.997 93 1.712 1.021 0.966 0.379 0.973 11.765
19* 99.409 39 1.302 1.843 0.871 0.273 0.831 289.92
57 117.595 11 1.140 2.316 0.785 0.237 0.962 56.910
1 146.047 12 1.515 2.485 0.876 0.393 0.991 261.561
54 147.410 22 1.727 2.273 0.711 0.236 0.574 50.512
54* 98.366 22 1.727 2.273 0.711 0.236 0.574 50.512
67* 41.400 21 2.254 1.746 0.789 0.283 0.937 11.050
67* 43.225 21 2.254 1.746 0.789 0.283 0.937 11.050
67* 53.355 21 2.254 1.746 0.789 0.283 0.937 11.050

7.6 Experimental Results 131

(S-5) Experimentation. The experimental runs are performed.
(S-6) Statistical modeling and prediction. Following Santner et al. (2003), the

response is modeled as a realization of a regression model and a random
process as described in Eq. (3.17). A Gaussian correlation function as
defined in Eq. (3.18) and a regression model with polynomial of order 2
have been used. Hence, the model reads

Y (x) =

p∑
j=1

βjfj(x) + Z(x), (7.10)

where Z(·) is a random process with mean zero and covariance V (ω, x) =
σ2R(θ, ω, x). The correlation function was chosen as

R(θ, ω, z)

d∏
j=1

exp
(−θj(ωj − xj)

2
)
. (7.11)

Additionally, at certain stages a tree-based regression model as shown in
Fig. 7.8 was constructed to determine parameter settings that produce
outliers.

(S-7) Evaluation and visualization. The MSE and the predicted values can
be plotted to support the numerical analysis (we produced all three-
dimensional visualizations with the DACE toolbox (Lophaven et al.
2002b)). For example, the interaction between c1 and c2 is shown in
Fig. 7.9. Values of c1 and c2 with c1 + c2 > 4 generated outliers that
might disturb the analysis. To reduce the effects of these outliers, a de-
sign correction method has been implemented, namely c1 = c2 − 4, if
c1 + c2 > 4. The right part of Fig. 7.9 illustrates the estimated MSE.
Since no design point has been placed in the ranges 1 < c1 < 1.25 and
2.25 < c2 < 2.5, the MSE is relatively high. This might be an interesting
region where a new design point will be placed during the next iteration.
Figure 7.10 depicts the same situation as Fig. 7.9 after the determination
of the design correction. In this case, a high MSE is associated with the
region c1 + c2 > 4, but no design point will be placed there.

(S-8) Optimization. Termination or design update. Based on the expected

improvement defined in Eq. (5.5), two new design points x
(1)
PSO and x

(2)
PSO

are generated. These two designs are evaluated and their performances
are compared to the performance of the current best design. The best
design found so far is reevaluated. The iteration terminates if a design
was evaluated for n = 50 times and the solution is obtained. The values
in the final model read s = 21, c1 = 2.25, c2 = 1.75, wmax = 0.79,
wscale = 0.28, witerScale = 0.94, and vmax = 11.05. This result is shown in
the last row of Table 7.10.

(S-9) Termination. If the obtained solution is good enough, or the maximum
number of iterations has been reached, go to step (S-11).

132 7 Comparison

 2923620

 651016.115

338609.38017

3149.2420955 201650.65

 C2 < 2.45842

 s < 8

 C2 < 2.34197

 C1 < 2.46837
At this node:
8 < s
C1 < 2.46837
C2 < 2.34197

Fig. 7.8. Regression tree. Values at the nodes show the average function values for
the associated node. The value in the root node is the overall mean. The left son
of each node contains the configurations that fulfill the condition in the node. The
configurations with c1 + c2 > 4 produce outliers that complicate the analysis. In
addition, this analysis shows that the swarm size s should be larger than 8

Fig. 7.9. Predicted values. Pa-
rameterizations with c1 + c2 > 4
produce outliers that complicate
the analysis. The plots present re-
sults from the same data as the
regression tree in Fig. 7.8

F
itn

es
s

Fig. 7.10. Predicted values. The
design correction avoids settings
with c1 + c2 > 4 that produce
outliers

7.6 Experimental Results 133

(S-10) Design update. New design points are generated and added to the
algorithm design. Go to step (S-5) to perform further experiments.

(S-11) Rejection or acceptance. Finally, we compare the configuration from Shi
& Eberhart (1999) to the optimized configuration. The final (tuned) and
the first configurations are repeated 50 times. Note, Shi & Eberhart (1999)
coupled xmax with vmax as described in Eq. (6.6). The mean function value
was reduced from 1.84 × 103 to 39.70, the median from 592.13 to 9.44,
and the standard deviation decreased from 3.10× 103 to 55.38. Minimum
and maximum function values from 50 runs are smaller (64.64 to 0.79 and
18519 to 254.19, respectively). Histograms and boxplots are illustrated in
Fig. 7.11 for both variants of PSO. The tuned design of the inertia weight
PSO variant clearly improves the performance of the PSO algorithm. The
statistical analysis from this and from further experiments is reported in
Table 7.12. Performing a classical t-test indicates that the null hypothesis
“There is no difference in the mean performances of the two algorithms”
can be rejected at the 5% level.

−2 0 2 4 6 8 10 12
0

5

10

15

20

25

log(function value)
1 2

0

2

4

6

8

10

lo
g(

fu
nc

tio
n

va
lu

e)

Configuration

Fig. 7.11. Histogram and boxplot. Left : Solid lines and light bars represent the
improved design. Right : The default configuration is denoted as 1, whereas 2 denotes
the improved variant. Both plots indicate that the tuned inertia weight PSO version
performs better than the default version

(S-12) Objective interpretation. The classical tools from exploratory data
analysis such as boxplots or histograms indicate that the tuned PSO

version performs better than the default PSO, cf. step (S-11). An NPT
t-test comes to the same conclusion. So far we have applied methods from
classical and modern statistics to test statistical hypotheses. The results
indicate that the null hypothesis H should be rejected. The next step of
our analysis describes how we can interpret this rejection in an objective
manner and how the relationship between statistical significance and sci-
entific import as depicted in Fig. 2.2 can be made more understandable.
But before a statistical analysis is performed, we recommend looking at
the raw data. Is the obtained result plausible? A comparison of the de-

134 7 Comparison

fault design x
(0)
PSO to the improved design x∗

PSO reveals that smaller swarm
size s and vmax values improve the algorithm’s performance for the prob-
lem design under consideration. The value of the cognitive parameter, c1,
should be increased, whereas the value of the social parameter, c2, should
be reduced. The parameters related to the scaling of the inertia weight, w,
should be reduced, too. The improved design does not contain any excep-
tional parameter settings. It appears to be a reasonable choice. Methods
that answer the question “Why does an increased value of c1 lead to a
better performance?” will be discussed in Chap. 8. Here, we are inter-
ested in the question “Does algorithm A outperform algorithm B?” But
how can we be sure that the related PSO performance is better than the
performance of the default PSO? Error statistical tools can be used to
tackle this problem. How do NPT∗ interpretations go beyond the results
found with NPT tools? This question is closely related to the problem
stated in Example 2.1 in the first part of this book.

We claim that statistical tests are means of learning. We are interested
in detecting differences between the correct model and a hypothesized one.
Experiments provide means to observe the difference between a sample
statistic and a hypothesized population parameter. The distribution of the
test statistic S can be used to control error probabilities. A rejection of a
statistical hypothesis H can be misconstrued if it is erroneously taken as
an indication that a difference of scientific importance has been detected.
Plots of the observed significance as introduced in Sect. 2.5 are valuable
tools that can be used to detect whether this misconstrual occurs and to
evaluate the scientific meaning.

We will consider the case of rejecting a hypothesis H first. An NPT∗

interpretation of accepting a hypothesis will be discussed in Sect. 7.6.2.
The relationship between the observed significance level αd(δ), the

difference in means δ = μ1 − μ2 of the default PSO, and the tuned PSO

version is illustrated in Fig. 7.12. First consider the values of the observed
significance level (αd(δ)) for a sample size of n = 50, where d denotes
the observed difference in means and δ the hypothesized difference as
introduced in Sect. 2.5. The observed difference in means is d = 1798.6;
one standard deviation unit has the value σx̂ = 410.84. A t-test indicates
that the null hypothesis can be rejected at the 5% level. Does the observed
difference in means occur due to the experimental error only and is the
rejection of the null hypothesis H misconstrued? A difference in means
of less than 1 or 2 standard error units might be caused by experimental
errors. Observe the values of α(1798.6, δ) = α1798.6(δ). How often does a
rejection arise when various populations are observed? Since an observed
significance level α1798.6(410.84) = 0.01 is small, it is a good indication
that we are observing two populations with a difference in means δ >
410.84. If one observes a difference d when the true difference in means δ
was no greater than 410.84, only 1% of the observed differences would be
this large. This gives good reason to reject the associated null hypothesis

7.6 Experimental Results 135

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l α

n=10
n=50
n=500

Fig. 7.12. Observed significance level. The particle swarm optimization with the
default parameters is compared to the tuned version. The observed differences are
1933, 1799, and 2077 for n = 10, 50, and 500 experiments, respectively (function
value while optimizing the 10-dimensional Rosenbrock function with a budget of
2500 function evaluations). Consider n = 50: A difference as small as 1100, which
would occur frequently, has an observed significance level smaller than 0.05. This is
a strong indication for the assumption that there is a difference as large as 1000.
This is case RE-2.1 as defined in Sect. 2.5

H : δ ≤ 410.84. And, we can learn even more from this result: It also
is an indication that δ > 822, since α1798.6(828) ≈ 0.05. The situation
depicted in Fig. 7.12 is similar to the situation discussed in Example 2.5.
Low αd(δ) values are not due to large sample sizes only. Therefore the
statistical results indicate that there is a difference in means and this
difference is also scientifically meaningful.

7.6.2 Optimizing the PSO Constriction Factor Variant

The design of the PSO constriction factor variant was tuned in a similar man-
ner as the inertia weight variant. The initial LHD is reported in Table 7.11,

where x
(l)
PSOC and x

(u)
PSOC denote the lower and upper bounds of the exper-

imental region, respectively, x∗
PSOC is the improved design that was found

by the sequential procedure, and x
(0)
PSOC is the default design recommended

in Clerc & Kennedy (2002). The run length distributions shown in Fig. 7.13 do
not clearly indicate which configuration performs better. Although the curve
of the tuned version (constriction∗) is above the curve of the default variant
(constriction), it is not obvious whether this difference is significant.

136 7 Comparison

Table 7.11. PSO constriction factor. Algorithm designs to optimize Rosenbrock’s
function. The variables s, χ, ϕ, and vmax have been defined in Table 6.5. x

(l)
PSOC and

x
(u)
PSOC denote the ranges of the LHD, x∗

PSOC is the improved design, and x
(0)
PSOC is

the design suggested in Clerc & Kennedy (2002)

Design s χ ϕ vmax

x
(l)
PSOC 5 0.68 3.0 10

x
(u)
PSOC 100 0.8 4.5 750

x∗

PSOC 17 0.759 3.205 324.438

x
(0)
PSOC 20 0.729 4.1 100

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
Empirical CDF

Function evaluations

F
(X

)

 Inertia

 Inertia*

 Constr

 Constr*

 NelderM

 NelderM*

Fig. 7.13. Run length distribution. Step (S-11), the final comparison of the canon-
ical and the improved design based on RLDs. Asterisks denote improved configu-
rations. The improved inertia weight version of PSO succeeded in more than 80%
of the experiments with less than 2500 function evaluations. The standard NMS

algorithm failed completely (hence the corresponding curve is not shown in this fig-
ure), but it was able with an improved design to succeed in 10% of the runs after
2500 function evaluations. For a given budget of 1500 function evaluations, both the
constriction factor and the improved inertia weight PSO variants perform equally
well

The numerical values indicate that the tuned version performs slightly
better than the default one (106.56 versus 162.02, as can be seen in Table 7.12),
but the corresponding graphical representations (histograms and boxplots,
not shown here) give no hints that there is a significant difference between

the performance of the tuned x∗
PSOC and x

(0)
PSOC (Clerc & Kennedy 2002).

This result is not very convincing. Further investigations are recommended.

7.6 Experimental Results 137

However, a t-test would accept the null hypothesis that there is no dif-
ference in means. But, is this result independent of the sample size? If the
sample size is increased, for example, if 2000 experiments were performed, a
t-test would reject the null hypothesis at the 5% level. This example demon-
strates how the experimenter can influence the outcome of the classical t-test
by varying the sample size n. Figure 7.14 illustrates the situation with tools
from the arsenal of an error statistician. The result presented in Fig. 7.14 is

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l β

n=10

n=50

n=2000

Fig. 7.14. Comparing PSO constriction and PSO constriction*, n = 10, 50, and
2000 repeats. The observed difference for n = 50 is d = 55.47. A t-test would
accept the null hypothesis H “there is no difference in means” for n = 50, because
β55.47(0) < 0.95. A t-test would reject the null hypothesis for n = 2000, because
β30.1(0) > 0.95. This is case AC-2.1 as introduced in Sect. 2.5. The t-test results
depend on the sample size

Table 7.12. Result table of the mean function values of the best particle in the
swarm after n = 50 runs, f̃ (50), for the Rosenbrock function. Q-N is the quasi-
Newton methods from Sect. 6.1.2. Default algorithm designs from Shi & Eberhart
(1999); Clerc & Kennedy (2002); Lagarias et al. (1998), as well as the improved
design for all algorithms, for n = 50 runs, are reported

Design Mean Median SD Min Max

x
(0)
PSO 1.84 × 103 592.13 3.10 × 103 64.64 18519

x∗

PSO 39.70 9.44 55.38 0.79 254.19

x
(0)
PSOC 162.02 58.51 378.08 4.55 2.62 × 103

x∗

PSOC 106.56 37.65 165.90 0.83 647.91

x
(0)
NMS 9.07 × 103 1.14 × 103 2.50 × 104 153.05 154966

x∗

NMS 112.92 109.26 22.13 79.79 173.04
Q-N 5.46 × 10−11 5.79 × 10−11 8.62 × 10−12 1.62 × 10−11 6.20 × 10−11

138 7 Comparison

a good indication that we are observing a population where the difference in
means is not larger than 120 (n = 50), or not larger than 50 (n = 2000).

But is this result really scientifically important? If the experimenter has
specified the largest scientifically unimportant difference greater than zero,
then this can be used to relate the statistical result to the scientific claim.
Obviously, metastatistical rules are necessary to interpret this result.

7.6.3 Comparing Particle Swarm Variants

Our next goal is to detect differences between the two major particle swarm
variants, the inertia weight and the constriction factor variant. As the former
requires only four parameters, a legitimate question is “Why does the inertia
weight variant require three additional factors?” We consider the differences
in the performance of the constriction and inertia weight particle swarm opti-
mization variants based on optimization data from the 10-dimensional Rosen-
brock function. Fifty experiments were performed, resulting in 50 differences.
The null hypothesis reads: “There is no difference in means.” The observed
difference is 66.86. As histograms and boxplots reveal, there is no statisti-
cally significant difference observable. Both configurations perform similarly.
Population mean, median, and standard deviation are shown in Table 7.12.

The plot of the observed significance versus the difference in means indi-
cates that differences δ in the mean value f̃ (50) larger than 100 seldom occur.
If the experimenter specifies the smallest scientifically significant difference he
can judge the consequences of accepting the null hypothesis.

7.6.4 Optimizing the Nelder–Mead Simplex Algorithm and a
Quasi-Newton Method

In the Nelder–Mead simplex algorithm, four parameters must be specified,
namely the coefficients of reflection ρ, expansion χ, contraction γ, and shrink-
age σ. Default settings are reported in Table 6.1. Experiments indicate that
the value of the reflection parameter, ρ, should be smaller than 1.5. An analy-
sis that is based on the visualization tools from the DACE toolbox reveals that
there exists a relatively small local optimum regarding χ (expansion param-
eter) and ψ (contraction parameter), respectively. The sequential approach
could be successfully applied to the NMS algorithm, its performance on the
Rosenbrock function was improved significantly. Results from this tuning pro-
cess are presented in Table 7.12.

In addition to the optimization algorithms analyzed so far, the perfor-
mance of a quasi-Newton method (see Sect. 6.1.2) was analyzed. An imple-
mentation from the commercial MATLAB optimization toolbox was used in
the experiments. Quasi-Newton clearly outperformed the other algorithms, as
can be seen from the results in Table 7.12.

7.7 Experimental Results for the S-Ring Model 139

A comparison of the RLDs of the three algorithms is shown in Fig. 7.13.
The results support the claim that PSO performs better than the NMS algo-
rithm. Only the tuned version of the latter was able to complete 20% of the
experiments with success. Regarding the two PSO variants, it is not obvious
which one performs better. After the tuning process, the inertia weight variant
appears to be better, but it requires the specification of seven (compared to
only four in the constriction factor variant) exogenous parameters. However,
the Rosenbrock function is mostly of academic interest, since it lacks many
features of a real-world optimization problem.

The analysis and the tuning procedure described so far have been based
solely on the average function value in 50 runs. This value may be irrele-
vant in a different optimization context. For example, the best function value
(minimum) or the median can be alternatively used. A similar optimization
procedure could have been performed for any of these cases with the presented
sequential approach. Note that the optimal algorithm design presented in this

study is only applicable to this specific optimization task x
(1)
rosen as listed in

Table 7.8.
As in Shi & Eberhart (1999), the starting points have been initialized

randomly in the range [15, 30]d. Hence, different sources of randomness are
mixed in this example. The following studies will be based on deterministically
generated starting points, as recommended in More et al. (1981).

7.7 Experimental Results for the S-Ring Model

The Rosenbrock function, which was considered in the previous sections, was
chosen to provide a comprehensive introduction to the sequential DACE ap-
proach. In the following, we will present a more realistic real-world problem.
The performance of a PSO is compared to a NMS algorithm and to a quasi-
Newton method. The S-ring simulator was selected to define a 12-dimensional
optimization problem with noisy function values. The number of function
evaluations, tmax, was limited to 1000 for each optimization run. This value
appears to be realistic for real-world applications. The related problem design
is reported in Table 7.13.

Similar to the analysis for the Rosenbrock function, the constriction factor
and inertia weight variants of PSO were analyzed. The former requires only
four exogenous strategy parameters, whereas seven parameters have to be

Table 7.13. Problem design for the S-ring experiments. Note that due to the
stochastic nature of the S-ring simulation model, no additional noise was added
to the function values

Design Init. Term. PM n tmax d xl xu

x
(1)
sring DETMOD EXH MBST 50 1000 12 −10 10

140 7 Comparison

specified for the latter. Optimizing the PSO inertia weight variant improved
the algorithm’s robustness as reported in Table 7.14. The average function
value decreased from 2.61 to 2.51, which is a significant difference. However,
it is very important to note that the minimum function value could not be
improved, but increased slightly from 2.4083 to 2.4127. The tuning procedure
was able to find an algorithm design that prevents outliers and produces
robust solutions at the cost of an aggressive exploratory behavior. However,
an increased probability of finding a solution that has a minimum function
value could have been specified as an optimization goal, resulting in a different
“optimal” design. Measures such as the best solution from n runs are better
suited for real-world optimization problems than the mean function value.
Computer-intensive methods facilitate the determination of related statistics.

Although the function values look slightly better, the tuning process pro-
duced no significant improvement for the rest of the algorithms. The constric-
tion factor PSO variant, as well as the NMS algorithm and the quasi-Newton
method were not able to escape from local optima. In contrast to the Rosen-
brock function, many real-world optimization problems have many local min-
ima on flat plateaus. The distribution of local optima in the search space is
unstructured. Therefore these algorithms were unable to escape plateaus of
equal fitness. This behavior occurred independently from the parameteriza-
tion of their exogenous strategy parameters. The inertia weight PSO variant
that required the determination of seven exogenous strategy parameters out-
performed the other algorithms in this comparison. Whether this improved
result was caused by the scaling property of the inertia weight is subject to
further investigation.

Experimental results indicate that there is no generic algorithm that works
equally well on each problem. Even different instances of one problem may

Table 7.14. Results from the optimization of the S-ring model. Default designs,
reported in Shi & Eberhart (1999); Clerc & Kennedy (2002); Lagarias et al. (1998),
and improved designs, for n = 50 repeats, are reported. The tuned inertia weight
PSO variant appears to be more robust than the default variant. It generates no
outliers, as can be seen in the last column, but it was not able to find a better
minimum. This is understandable, because the sequential parameter optimization
selected algorithm designs based on their mean best function values

Design Mean Median SD Min Max

x
(0)
PSO 2.6152 2.5726 0.4946 2.4083 5.9988

x∗

PSO 2.5171 2.5112 0.0754 2.4127 2.6454

x
(0)
PSOC 4.1743 2.6252 1.7021 2.5130 5.9999

x∗

PSOC 4.1707 2.6253 1.7055 2.5164 5.9999

x
(0)
NMS 4.3112 4.3126 1.7059 2.6200 5.9999

Quasi-Newton 4.3110 4.3126 1.7060 2.6186 5.9999

7.8 Criteria for Comparing Algorithms 141

require different algorithms, or at least different parameterizations of the em-
ployed algorithms. None of the algorithms has proved in our study to be
satisfying for every problem. The quasi-Newton method, as expected, out-
performed the other algorithms on the Rosenbrock function, but it failed
completely on the elevator optimization problem, where the inertia weight
PSO variant, which requires nearly twice as many parameters as the PSO

constriction factor variant, performed best.
Finally, we note that the determination of a good initial algorithm (and

problem) design is not trivial, and therefore is a drawback of the proposed
approach. This is common to all statistical methods in this field, especially
for the classical DOE approach.

7.8 Criteria for Comparing Algorithms

Nowadays it is widely accepted that there is no algorithm that performs on
average better than any other algorithm. Schwefel (1995) comments on evo-
lution strategies:

So, is the evolution strategy the long-sought-after universal method of
optimization? Unfortunately, things are not so simple and this ques-
tion cannot be answered with a clear “yes.”

Some optimization algorithms are exceptionally popular, for example, the
Nelder–Mead simplex algorithm or evolutionary algorithms. The popularity
of these direct search algorithms is not founded on their overall optimality,
but might be related to the following reasons:

1. Direct search algorithms are appealing, because they are easy to explain,
understand, and implement. They share this feature with some of the
designs presented in Chap. 5.

2. For many real-world optimization problems, it is vital to find an improve-
ment, but not the global optimum. Direct search algorithms produce sig-
nificant improvements during the first stage of their search.

3. Function evaluations are extremely costly in many real-world applications.
Hence, the usage of finite-gradient approximation schemes that require at
least d function evaluations in every step is prohibitive (d denotes the
problem dimension).

We claim that universal optimization methods are suitable tools during the
first stage of an optimization process. The experimental methodology pre-
sented in this chapter provides statistical tools to detect relevant factors. It
can be advantageous to combine or even to replace the universal method
with small, smart, and flexible heuristics. The experimental analysis provides
means for a deepened understanding of the problem, the algorithm, and their
interaction as well. Learning happens and leads to progress in science.

142 7 Comparison

Table 7.15. Sequential parameter optimization. This approach combines methods
from computational statistics and exploratory data analysis to improve (tune) the
performance of direct search algorithms. It can be seen as an extension of the guide-
lines from experimental algorithmics presented in Chap. 1

Step Action

(S-1) Preexperimental planning

(S-2) Scientific claim

(S-3) Statistical hypothesis

(S-4) Specification of the

(a) Optimization problem

(b) Constraints

(c) Initialization method

(d) Termination method

(e) Algorithm (important factors)

(f) Initial experimental design

(g) Performance measure

(S-5) Experimentation

(S-6) Statistical modeling of data and prediction

(S-7) Evaluation and visualization

(S-8) Optimization

(S-9) Termination: If the obtained solution is good enough, or the maximum
number of iterations has been reached, go to step (S-11)

(S-10) Design update and go to step (S-5)

(S-11) Rejection/acceptance of the statistical hypothesis

(S-12) Objective interpretation of the results from step (S-11)

7.9 Summary

The ideas presented in this chapter can be summarized as follows:

1. Tuning was introduced as an optimization process.
2. Optimization relies on very restrictive assumptions. “With the possi-

ble exception of the laboratory or casino” these assumptions are met
nowhere (Klein 2002).

3. An optimization process can be regarded as a process that enables learn-
ing. This concept is related to Mayo’s extension of the classical NPT
approach.

7.10 Further Reading 143

4. To start the tuning process, a performance measure has to be defined.
Effectivity and efficiency can guide the choice of an adequate performance
measure.

5. The classical DOE approach consists of three steps: screening, modeling,
and optimization. Each step requires different experimental designs.

6. As the assumption of a linear model for the analysis of computer programs
is highly speculative, a sequential approach (SPO) that combines classical
and modern statistical tools has been proposed. This sequential process
can be used for tuning algorithms. It consists of the twelve steps that are
reported in Table 7.15.

7. Results that are statistically significant are not automatically scientifically
meaningful. Results from the classical Neyman–Pearson theory of testing
should be complemented with NPT∗ tools.

8. The optimization practitioner does not always choose the absolute best
algorithm. Sometimes a robust algorithm or an algorithm that provides
insight into the structure of the optimization problem is preferred.

7.10 Further Reading

Montgomery (2001) discusses classical DOE techniques, whereas Santner
et al. (2003) give an introduction to DACE. Breiman et al. (1984) is a stan-
dard text book for classification and regression tree methods. Klein’s view-
point is based on the approach of bounded rationality (Simon 1955; Rubinstein
1998; Klein 2002).

The tuning approach presented in this chapter has been successfully ap-
plied to several optimization tasks, for example, in evolutionary optimization
of mold temperature control strategies (Mehnen et al. 2004a), digital circuit
design using evolutionary algorithms (Beielstein et al. 2001, 2002a), eleva-
tor group control (Beielstein et al. 2003a; Bartz-Beielstein et al. 2005c), ge-
netic programming of algorithmic chemistry solving the 4-bit odd parity prob-
lem (Lasarczyk & Banzhaf 2005a, b), or real-world problem from the chemical
engineering domain, the design of a nonsharp separation sequence (Aggarwal
& Floudas 1990; Bartz-Beielstein et al. 2005b)

Bartz-Beielstein (2003) uses the classical DOE approach to compare a
variant of simulated annealing (Belisle 1992) to an evolution strategy. An ap-
proach that combines classical DOE techniques, regression trees, and DACE

was shown in Bartz-Beielstein & Markon (2004).
Bartz-Beielstein et al. (2003a), Mehnen et al. (2004a, b), Weinert et al.

(2004), Bartz-Beielstein & Naujoks (2004), and Bartz-Beielstein et al. (2004c)
applied tuning procedures to multicriteria optimization problems.

8

Understanding Performance

Life is really simple, but men
insist on making it complicated.

—Confucius

This chapter closes the circle on the problem begun in the discussion of the
Neyman–Pearson theory in Chap. 2. It demonstrates the difference between
statistical testing as an automatic rule (NPT) and as a learning tool (NPT∗).
Automatic rules can be implemented as computer programs that generate
solutions. Learning tools provide means to interpret the relevance of these
results.

First, existing approaches and theoretical results for the design and anal-
ysis of experiments for selection and screening are presented. The related
statistical procedures require assumptions that are not always met in prac-
tice, especially when applied to search algorithms. A classification of methods
that can be integrated into the selection process of evolutionary algorithms is
presented. Threshold selection is one approach to handle the problem of noisy
function evaluations. The second part presents a case study to demonstrate
how NPT∗ tools enable an understanding of the basic principles of threshold
selection.

Understanding can be seen not only as an analytic, but also as a synthetic,
bottom-up approach: Simple algorithms often perform excellently on realistic
benchmark problems (Watson et al. 1999; Whitley et al. 2002). Therefore,
it might be useful to determine the essential features of algorithms. Starting
from the very basic parts of the algorithm, new parts are added if they im-
prove the algorithm’s performance. Interactions play an important role, since
some effects may appear only as a result of correlations between two or more
parts. In preexperimental studies, simple configurations are tested to find out
whether there is any effect at all. They enable the experimenter to define a
first experimental design and to state the scientific claim more precisely.

8.1 Selection Under Uncertainty

Noise is a common factor in most real-world optimization problems. It
arises from different sources, such as measurement errors in experiments, the

146 8 Understanding Performance

stochastic nature of the simulation process, or the limited number of samples
gathered from a large search space. Common means used by evolutionary al-
gorithms to cope with noise are resampling, averaging techniques based on
statistical tests, local regression methods for function value estimation, or
methods to vary the population size (Stagge 1998; Beyer 2000; Sano & Kita
2000; Arnold 2001; Branke et al. 2001; Bartz-Beielstein & Markon 2004). In
this book we concentrate our investigations on the selection process when the
function values are disturbed by additive noise.

Noise that affects the object variables is not the subject of our investi-
gations. From our point of view the following case is fundamental for the
selection procedure in noisy environments (Markon et al. 2001):

Reject or accept a new candidate, while the available information is
uncertain. Thus, two errors may occur: An α error as the probability
of accepting a worse candidate due to noise and a β error, as the error
probability of rejecting a better candidate.

In the context of selection and decision making, the terms “candidate” and
“point” will be used synonymously. A well-established context where these
error probabilities are analyzed is hypothesis testing as introduced in Sect. 3.1.

8.1.1 A Survey of Different Selection Schemes

Depending on the prior knowledge, selection schemes can be classified accord-
ing to the following criteria:

1. threshold: subset selection—indifference zone
2. termination: single stage—multistage (sequential)
3. sample size: open procedures—closed procedures
4. variances: known—unknown, equal—unequal

The goal of subset selection is the identification of a subset containing the best
candidate. It is related to screening procedures. Subset selection is used when
analyzing results, whereas the indifference zone approach is used when design-
ing experiments. The sample size r is known in subset selection approaches;
it is determined prior to the experiments in the indifference zone approaches.

Single-stage procedures can be distinguished from multistage procedures.
The terms “multistage” and “sequential” will be used synonymously. The lat-
ter can use elimination: If inferior solutions are detected, they are eliminated
immediately. Selection procedures are closed if prior to experimentation an
upper bound is placed on the number of observations to be taken from each
candidate. Otherwise, they are open. Furthermore, it is important to know
whether the variance is common or known.

Our analysis is based on the following statistical assumptions. Let {Yij},
1 ≤ i ≤ r, 1 ≤ j ≤ s, denote r independent random samples of observations,
taken from s ≥ 2 candidates. The Yij can denote function values taken from
candidate solutions X1, . . . , Xs or individuals (particles) of some evolutionary

8.1 Selection Under Uncertainty 147

algorithm. Candidate Xi has a (fitness) function value with unknown mean
μi and common unknown variance σ2

ε,i = σ2
ε , 1 ≤ i ≤ s. The ordered means

are denoted by
μ[1] ≤ μ[2] ≤ . . . ≤ μ[s], (8.1)

where μ[1] denotes the mean of the best candidate (minimization). Generally,
normal response experiments are considered.

8.1.2 Indifference Zone Approaches—A Single Stage Procedure

In the indifference zone approach, the optimization practitioner a priori speci-
fies a value δ∗ > 0 representing the smallest difference worth detecting (thresh-
old). The difference δ∗ is related the largest scientifically unimportant value
δun (Eq. 2.9). Errors below this threshold resulting from incorrect selection
are ignored. Following Bechhofer et al. (1995) we define experimental goals
(G) and associated probability requirements (P). The experimental goal is
related to the scientific claim (see step (S-2) in Sect. 7.5), whereas the proba-
bility requirement is related to the statistical model of experimental tests (see
Fig. 2.2). The first experimental goal reads:

(G-8.1) To select the candidate associated with the smallest mean μ[1].

A correct selection (CS) is said to have been made if (G-8.1) is achieved. Let
δ∗, 0 < δ∗ < ∞, be the smallest difference worth detecting. The probability
requirement reads

(P-8.1) For given constants (δ∗, P ∗) with 1/s < P ∗ < 1, we require

Pr(CS) ≥ P ∗, whenever μ[2] − μ[1] ≥ δ∗. (8.2)

A configuration that satisfies the preference zone requirement

μ[2] − μ[1] ≥ δ∗, (8.3)

is said to be in the preference zone, otherwise it is said to be in the indifference
zone. Indifference zone approaches are procedures that guarantee Eq. (8.2).
Bechhofer et al. (1995) proposed the single-stage selection procedure shown
in Fig. 8.1 for common known variance. The selection procedure shown in
Fig. 8.1 is location-invariant; only the difference in means, and not their abso-

lute values are important. The upper-α equicoordinate critical point Z
(α)
s,ρ , see

Eq. (3.4), is determined to satisfy the probability requirement (P-8.1) for any
true configuration of means satisfying the preference zone requirement, see
Eq. (8.3). Under the assumptions from Sect. 8.1.1 is no procedure requiring
fewer observations per candidate than the procedure shown in Fig. 8.1 if the
experimenter is restricted to single-stage location-invariant procedures that
guarantee the probability requirement (P-8.1) (Bechhofer et al. 1995).

148 8 Understanding Performance

Procedure: Single-stage procedure

1. For the given s and specified (δ∗/σε, P
∗) determine

r =

‰
2

“
σεZ

(1−P∗)
s−1,1/2/δ∗

”2
ı

. (8.4)

2. Take a random sample of r observations Yij , 1 ≤ j ≤ r, in a single stage
from Xi, 1 ≤ i ≤ s.

3. Calculate the s sample means yi =
Pr

j=1 yij/r, 1 ≤ i ≤ s.
4. Select the candidate that yields the smallest sample mean y[1] as the one

associated with the smallest sample mean μ[1].

Fig. 8.1. Indifference zone approach; single-stage procedure

8.1.3 Subset Selection

Selection of a Subset of Good Candidates

A common problem for population-based direct search methods is the se-
lection of a subset of s “good” candidates out of a set of m (1 ≤ s < m)
under uncertainty. Gupta (1965) proposed a single-stage procedure, which is
applicable when the function values of the candidates are balanced (see also
Sect. 3.1.2) and normal with common variance.

Selection of a Random-Size Subset of Good Candidates

This selection method generates a random-size subset that contains the can-
didate associated with the smallest true mean μ[1].

(G-8.2) To select a (random-size) subset that contains the candidate Xi as-
sociated with μ[1].

For unknown variance σ2
ε the probability of a correct selection depends on

(μ, σ2
ε). If the variance is known, Pr(CS) depends only on the true means

μ = (μ1, . . . , μs).

(P-8.2) For a specified constant P ∗ with 1/s < P ∗ < 1, we require that

Pr{CS|(μ, σ2
ε)} ≥ P ∗ (8.5)

for all μ.

The Gupta selection procedure shown in Fig. 8.2 implements a (random-
size) subset-selection method. Bartz-Beielstein & Markon (2004) implemented
this selection scheme for evolutionary algorithms in noisy environments. As
the size of the selected subset is not known in advance, the population size

8.1 Selection Under Uncertainty 149

varies during the optimization: It increases with the noise level. Nelson et al.
(1998) and Goldsman & Nelson (1998) propose an extension of Gupta’s single-
stage procedure that is also applicable if the variances are unknown and not
necessarily equal. A subset-selection approach for the selection of the s best
candidates is described in Bechhofer et al. (1995, p. 86).

Procedure: Gupta selection for unknown variance

1. Take a random sample of r observations Yij , 1 ≤ j ≤ r, in a single stage
from Xi, 1 ≤ i ≤ s.

2. Calculate the s sample means yi =
Pr

j=1 yij/r, 1 ≤ i ≤ s.
3. Calculate

s2
ν =

sX
i=1

rX
j=1

(yij − yi)
2/ν, (8.6)

the unbiased pooled estimate of σ2
ε based on ν = s(r−1) degrees of freedom.

4. Include the candidate Xi in the selected subset if and only if

yi ≤ y[1] + hsν

p
2/r, (8.7)

where
h = T

(1−P∗)

s−1,ν,1/2
. (8.8)

Fig. 8.2. Subset selection. This is a single-stage procedure for unknown variance σ2
ε ;

h is the equicoordinate critical point of the equicorrelated multivariate t-distribution.
If σ2

ε is known, h is the upper (1 − P ∗) equicoordinate critical point of the equicor-
related multivariate standard normal distribution, see Eq. (3.4)

Selection of δ∗-Near-Best Candidates

Selecting the near-best candidate may be more useful than selecting the s best
candidates in some situations (Fabian 1962; Bechhofer et al. 1995). Candidate
Xi is δ∗-near-best, if μi is within a specified amount δ∗ > 0 of the smallest
sample mean:

μi ≤ μ[1] + δ∗. (8.9)

(G-8.3) Select a (random-size) subset that contains at least one candidate Xi

satisfying Eq. (8.9).

(P-8.3) For specified constants (δ∗, P ∗) with δ∗ > 0 and 1/s < P ∗ < 1, we
require that (see Roth (1978); van der Laan (1992)):

Pr{δ∗-near-best CS} ≥ P ∗, (8.10)

for all μ.

A δ∗-near-best selection procedure is shown in Fig. 8.3.

150 8 Understanding Performance

Procedure: δ∗-Near-best selection

1. Take a random sample of r observations Yij , 1 ≤ j ≤ r, in a single stage
from Xi, 1 ≤ i ≤ s.

2. Calculate the s sample means yi =
Pr

j=1 yij/r, 1 ≤ i ≤ s.
3. Include the candidate Xi in the selected subset if and only if

yi ≤ y[1] + h(δ∗)σε

p
2/r, (8.11)

where
h(δ∗) = Z

(1−P∗)

s−1,1/2
− δ∗/σε

p
r/2. (8.12)

Fig. 8.3. δ∗-Near-best selection

8.1.4 Threshold Selection

Threshold rejection (TR) and threshold acceptance (TA) are complementary
strategies. Threshold rejection is a selection method for evolutionary algo-
rithms that accepts new candidates if their noisy function values are signif-
icantly better than the value of the other candidates (Markon et al. 2001).
“Significant” is equivalent to “by at least a margin of τ .” The threshold value τ
is related the largest scientifically unimportant value δun (Eq. 2.9). Threshold
acceptance accepts a new candidate even if its noisy function value is worse.
The term “threshold selection” subsumes both selection strategies.

The basic idea of threshold selection is relatively simple and is already
known in other contexts:

• Matyáš (1965) introduced a threshold operator (with some errors, see Driml
& Hanš (1967)) for a (1+1)-evolution strategy and objective functions
without noise.

• Stewart et al. (1967) proposed a threshold strategy that accepts only ran-
dom changes that result in a specified minimum improvement in the func-
tion value.

• Dueck & Scheuer (1990) presented a threshold acceptance algorithm.
• Winker (2001) discussed threshold acceptance for problems in economet-

rics, statistics and operations research.
• Nagylaki (1992) stated that a similar principle, the so-called truncation se-

lection, is very important in plant and animal breeding: “Only individuals
with phenotypic value at least as great as some number c are permitted
to reproduce.” Truncation selection is important for breeders, but it is
unlikely to occur in natural populations.

Threshold selection is also related to Fredkin’s paradox: “The more equally
attractive two alternatives seem, the harder it can be to choose between
them—no matter that, to the same degree, the choice can only matter

8.1 Selection Under Uncertainty 151

less” (Minsky 1985). Regarding the distinction between rules of inductive
behavior and learning rules given in Sect. 2.5.2, TS as presented here is an
automatic test rule and belongs to the former type of rules.

The Threshold Selection Procedure

As in (G-8.1), the experimental goal is to select the candidate associated with
the smallest mean μ[1]. Figure 8.4 shows the threshold selection algorithm.
As can be seen from Eq. (8.13), threshold rejection increases the chance of

Procedure: Threshold selection

1. Given: A candidate X1 with a related sample Y1j of r observations and
sample mean y1 =

Pr
j=1 y1j/r.

2. Take a random sample of r observations Y2j , 1 ≤ j ≤ r, in a single stage
from a new candidate X2.

3. Calculate the sample mean y2 =
Pr

j=1 y2j/r.
4. Select the new candidate X2 if and only if

TR : y2 + τ < y1, with τ ≥ 0, (8.13)

or
TA : y2 + τ < y1, with τ ≤ 0. (8.14)

Fig. 8.4. Threshold selection. This basic procedure can be implemented in many
optimization algorithms, for example, evolution strategies or particle swarm opti-
mization. TA increases the chance of accepting worse candidates, whereas TR ac-
cepts solutions if their observed function value is better by at least a margin τ than
the best value observed so far

rejecting a worse candidate at the expense of accepting a good candidate. It
might be adequate if there is a very small probability of generating a good
candidate. Equation (8.14) reveals that threshold acceptance increases the
chance of accepting a good candidate at the risk of failing to reject worse
candidates.

Threshold Selection and Hypothesis Testing

The calculation of a threshold value for the TR scheme can be interpreted in
the context of hypothesis testing as the determination of a critical point (Beiel-
stein & Markon 2001). The critical point c1−α for a hypothesis test is a thresh-
old to which one compares the value of the test statistic in a sample. It specifies
the critical region CR and can be used to determine whether or not the null
hypothesis is rejected. We are seeking a value c1−α, so that

152 8 Understanding Performance

Pr{S > c1−α |H true } ≤ α, (8.15)

where S denotes the test statistic, and the null hypothesis H reads: “There
is no difference in means.” Note that Eq. (8.15) is related to Eq. (3.6) in
Sect. 3.1.2. The threshold acceptance selection method can be interpreted in
a similar manner.

Generally, hypothesis testing interpreted as an automatic rule as intro-
duced in Sect. 2.5.2 considers two-decision problems in which a null hypoth-
esis H is either accepted or rejected. A false null hypothesis can be rejected
50% of the time by simply tossing a coin. Every time that heads comes up,
H is rejected. The rejection procedures considered so far (Figs. 8.1–8.3) can
be applied to s-decision problems. Here, larger sample sizes are required than
for the two-decision problem. The probability of a correct selection for s > 2
is smaller than 50% if the decision is based on the roll of a fair s-sided die.
To avoid too large sample sizes r for fixed s, the indifference zone δ∗ can be
increased, or the probability of a correct selection P ∗ can be reduced.

Known Theoretical Results

The theoretical analysis in Markon et al. (2001), where threshold rejection
was introduced for evolutionary algorithms with noisy function values, was
based on the progress rate theory on the sphere model and was shown for
the (1 + 1)-ES. However, this theoretical result is only applicable when the
distance to the optimum and the noise level are known—conditions that are
not very often met in practice. By interpreting this result qualitatively, we
can see that the threshold value τ should be increased while approaching the
optimizer x∗ (τ should be infinite when the optimum is obtained).

Another approach was used by Beielstein & Markon (2001). They demon-
strated theoretically and experimentally how threshold rejection can improve
the quality gain. This performance measure was introduced in Eq. (7.4) as the
expected change in the function value. The influence of TR on the selection
process was analyzed using a simple stochastic search model that is related to
models proposed by Goldberg (1989) and Rudolph (1997b). This model pos-
sesses many crucial features of real-world optimization problems, i.e., a small
probability of generating a better offspring in an uncertain environment. Then
the search can be misled, although the algorithm selects only “better” candi-
dates. TR can prevent this effect. In the simple stochastic search model the
optimal threshold value could be calculated as a function of the noise strength,
the probability of generating a better candidate, and the difference between
the expectation of the function values of two adjacent states.

However, the determination of an optimal threshold value in this simple
search model requires information that is usually not available and can only be
estimated in real-world situations. For example, the probability of generating
a better offspring is unknown during the search process; it is estimated in evo-
lution strategies, cf. the definition of the estimated success rate in Eq. (8.19).

8.2 Case Study I: How to Implement the (1 + 1)-ES 153

8.1.5 Sequential Selection

The selection procedures presented above can be extended to sequential strate-
gies. We list some promising approaches that might be applicable as popula-
tion based selection schemes.

For the case of unknown variance σ2
ε , Santner (1976) proposed a two-stage

selection scheme. Considering candidates with different means, unknown and
not necessarily equal variances, Sullivan & Wilson (1984, 1989) presented a
bounded subset selection for selecting a δ∗-near-best candidate.

A fully sequential procedure was proposed by Paulson (1964). Hartmann
(1988, 1991) improved this procedure. Kim & Nelson (2001) extended the
approach from Hartmann (1991) to unequal and unknown variances.

Bechhofer et al. (1990) and Kim & Nelson (2001) demonstrated the su-
periority of sequential selection methods over two-stage ranking-and-selection
procedures. Pichitlamken & Nelson (2001) and Pichitlamken et al. (2003)
presented a sequential selection procedure with memory (SSM). SSM is fully
sequential with elimination: If inferior solutions are detected, they are elimi-
nated immediately.

Bartz-Beielstein et al. (2005a) discussed the performance of the particle
swarm optimization on functions disturbed by additive and multiplicative
Gaussian noise. By comparing two simple algorithmic variants, they examine
whether noise is more detrimental if it affects the selection of the local best
or the selection of the global best. It is shown that parameter tuning alone
is not sufficient to cope with noise, and that multiple sampling of solutions
may be necessary to guarantee convergence. Finally, a new PSO variant with
integrated sequential sampling technique is proposed, the optimal computing
budget allocation (OCBA). OCBA was introduced in Chen et al. (1997). The
aim of this method is to find the best within a set of candidate solutions and
to select it with a high probability. The OCBA variant is a closed procedure
and can be used for unknown and unequal variances. It draws samples se-
quentially until the computational budget is exhausted while adjusting the
selection of samples to maximize the probability of a correct selection. The
reader is referred to Chen et al. (2003) for a more detailed description. It is
demonstrated that PSO with OCBA is superior to either the simple PSO or
the PSO which samples each solution equally often. To show its superiority,
the new PSO variant has to be tuned with SPO in advance.

8.2 Case Study I: How to Implement the (1 + 1)-ES

After introducing several strategies to cope with noise during selection, we
demonstrate how the new experimentalism—and especially sequential param-
eter optimization—can be applied to analyze the effects of implementing these
strategies. We have to define a baseline to judge the effect of a new selection
operator. The (1+1)-ES is well suited to define this standard for comparisons.

154 8 Understanding Performance

It was developed in the 1960s as a minimal concept for an imitation of organic
evolution (Schwefel 1995), therefore new algorithms should outperform this
algorithm.

We will also consider an ES-variant that does not modify the step size σ(t)

(cf. Eq. (6.3)). It is expected to be outperformed by other algorithms. However,
sometimes unexpected results may occur. Probably nothing unexpected may
happen, “but if something did happen, that would be a stupendous discov-
ery” (Hacking 1983). This algorithm requires the specification of a (constant)
step size σ value only.

Before we can analyze the performance of the (1+1)-ES, we have to choose
an implementation of the control of the step size (mutation strength) σ. There
are some open questions regarding this implementation. Wrongly implemented
algorithms might lead to comparisons that are worthless. Step-size adaptation
relies on the following heuristic: The step size (standard deviation) should
be adapted during the search. It should be increased if many successes occur,
otherwise it should be reduced. Rechenberg (1973) derived the 1/5 success rule,
which was presented in Sect. 6.2.1, to control the step sizes. While discussing
the 1/5 rule in evolution strategies, Schwefel (1995) notes:

In many problems this [1/5 success rule] rule proves to be very effective
in maintaining approximately the highest possible rate of progress
towards the optimum. While in the rightangled corridor model the
variances are adjusted once and for all in accordance with this rule and
subsequently remain constant, in the sphere model they must steadily
become smaller. The question then arises (1) as how often the success
criterion should be tested and (2) by what factor the variances are
most efficiently reduced or increased (p. 112; emphasis and numeration
added).

To answer the first question (“how often”), Schwefel (1995) recommended
using a measurement period su = d and an adaptation interval size sn = 10d.

To answer the second question (“by what factor”), Schwefel proceeds as
follows: Let r denote the current (Euclidean) distance of the search point from
the optimizer and d the problem dimension. The progress rate ϕ, which was
introduced as performance measure (PM-7.14) in Sect. 7.2.3, is defined as the
change in the distance to the optimizer. Based on the maximum progress rate,

ϕmax = k1r/d, k1 � 0.2025, (8.16)

with a common variance σ2, which is always optimal given by

σopt = k2r/d, k2 � 1.224, (8.17)

for all components zi of the random vector z (Eq.(6.1)), the following relation
can be derived:

lim
d→∞

σ
(t+d)
opt

σ
(t)
opt

= lim
d→∞

(
1 − k1

d

)d

= exp−k1 � 0.817 � 1

1.224
. (8.18)

8.2 Case Study I: How to Implement the (1 + 1)-ES 155

An implementation of this heuristic with the design variables presented in
Table 6.2 can be described as in Fig. 8.5.

Heuristic: The 1/5 success rule.
After every su (= d) iterations, check how many successes have occurred over
the preceding sn (= 10d) iterations. If this number is less than sn × sr (= 2d),
multiply the step lengths by the factor sa (= 0.85); divide them by sa (= 0.85)
if more than sn × sr (= 2d) successes occurred.

Fig. 8.5. Step-size adaptation. Settings from (Schwefel 1995) are shown in brackets;
d denotes the problem dimension

We implemented the 1/5 rule as follows: A success vector v(t) ∈ B
sn is

initialized at iteration t = 1: v
(t)
k = 0, 1 ≤ k ≤ sn. If a successful mutation

occurs at iteration t, the (1+ t mod sn)th bit is set to 1, otherwise it is set to
0. After an initialization phase of sn iterations, the success rate is estimated
every su iterations as

ŝ(t)
r =

sn∑
k=1

v
(t)
k /sn. (8.19)

Implications arising from very small sn values have to be mentioned, e.g., if
sn = 1, then the value of the success rate sr has no effect on the algorithm.
As v(t) stores information about previous successes and failures, it will be
referred to as the memory vector .

8.2.1 The Problem Design Sphere I

The problem design x
(0)
sphere (Table 8.1) was chosen for the first experiments

from this case study. Schwefel (1988) notes that in lower dimension, nearly
every strategy may achieve good results. To avoid improper conclusions, the
problem dimension was taken as large as d = 30. To keep the (1 + 1)-ES
competitive to other algorithms, we have chosen a budget of 1000 function

Table 8.1. Problem design x
(0)
sphere for the experiments performed in this chapter.

The experiment’s name, the number of runs n, the maximum number of function
evaluations tmax, the problem’s dimension d, the initialization method, the termina-
tion criterion, the starting point for the initialization of the object variables x(0), as
well as the optimization problem and the performance measure (PM) are reported

Design Init. Term. PM n tmax d x(0)

x
(1)
sphere DETEQ EXH MBST 50 1000 30 100

156 8 Understanding Performance

evaluations only. Note that different settings, especially for large tmaxvalues,
might produce directly opposed results. Anyhow, in many real-world applica-
tions more than 1000 function evaluations are prohibitive. The deterministic
initialization scheme DETEQ, which was presented in Sect. 5.5.1, has been
selected to reduce the variance and to enable the application of the funda-
mental ANOVA principle (Sect. 3.4).

The mean best function value (Sect. 7.2.2) has been chosen as a perfor-
mance measure because it is commonly used. Note that we have chosen the

problem design x
(0)
sphere (Table 8.1) as a starting point for further investiga-

tions. Settings from this design will be varied during the experimental analysis.

Algorithm design x
(0)
ES (Table 8.2) has been used for the first experiments.

Design plots give an overview how the algorithm behaves. They require
factorial designs and can be used to determine ranges for suitable parameter
settings. However, design plots do not provide any information about factor
interactions. The design plots (Fig. 8.6) suggest that small values, e.g., sn =
10, should be chosen for the adaptation interval, a success rate of 1/5, a step-
size adaptation value of 0.85, and values in the range from 30 to 50 for the
update interval su result in an improved performance of the (1+1)-ES on the
30-dimensional sphere function.

10 30 300
0.5

1

1.5

2

2.5
x 10

4

Sn

M
ea

n

3 5 10
1

1.2

1.4

1.6
x 10

4

Sr

M
ea

n

0.75 0.85 0.999
0

1

2

3
x 10

4

Sa

M
ea

n

3 30 50
0.5

1

1.5

2

2.5
x 10

4

Su

M
ea

n

Fig. 8.6. Design plots from the first experiments that use problem design x
(0)
sphere

and algorithm design x
(0)
ES . They suggest that the value of 300 for the adaptation

interval is much too high; smaller values for the step size adaptation, and larger
values for the update interval, respectively, appear to be beneficial

This first picture can be misleading if interactions are omitted. Interaction
plots—which use the same data as the design plots—are considered next.
Combining the results from both plots (Figs. 8.6 and 8.7), we can conclude

8.2 Case Study I: How to Implement the (1 + 1)-ES 157

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Su

m
ea

n
of

 Y

3 30 50

 Sn

300
10
30

Fig. 8.7. Interaction plots provide important information to complement interpre-
tations of design plots (Fig. 8.6). Two conclusions can be drawn from this figure: (1)
Lower values for the adaptation interval improve the algorithm’s performance. (2)
This figure illustrates nicely how interactions can misguide the analysis. Interactions
caused by a worse setting of the adaptation interval (sn = 300) cause the impression
(Fig. 8.6) that small sn values should be avoided. However, as the interaction plot
reveals, just the opposite is true: smaller values are better

that the role of the adaptation interval has to be reconsidered: small values,
e.g., su = 3, improve the algorithm’s performance.

After further design points have been added to refine the analysis (algo-

rithm design x
(1)
ES in Table 8.2), an unexpected effect occurs. The algorithm

performs significantly better if even values for sn are chosen.
This effect could be observed if a success rate of 1/2 was chosen. It can be

explained as follows. There are four possible settings for the memory vector
if sn = 2: v ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. The memory vector is used to store
the number of successes. The step-size adaptation scheme was implemented
as shown on the left in Fig. 8.8: Decrease the step size, if

Table 8.2. Algorithm designs for the (1 + 1)-ES. The adaptation interval sn, the
success rate 1/sr, the step-size adjustment factor sa, and the update interval su

were defined in Table 6.2. An initial step-size value σ(0) = 1 was chosen for these
experiments. Note that we use a compact representation for algorithm designs in
this and the following tables, i.e., 2:9 is the set of integers from 2 to 9.

Design sn sr sa su

x
(0)
ES {10,30,300} {3,5,10} {0.75,0.85,0.999} {3,30,50}

x
(1)
ES 2:9 2:5 0.75:1:0.95 {2,10,20}

158 8 Understanding Performance

i f i t e r > sn
i f (mod(i t e r , su)==0)
i f sum(v) /sn < 1/ s r
s = s ∗ sa ;

else
s = s / sa ;

end
end

end

1 i f i t e r > sn
i f (mod(i t e r , su)==0)

3 i f sum(v) / sn < 1/ s r
s = s ∗ sa ;

5 e l s e i f sum(v) /sn > 1/ s r
s = s / sa ;

7 end
end

9 end

Fig. 8.8. Implementation of the (1 + 1)-ES step size adaptation; v denotes the
memory vector, sn, sr, sa, and su as defined in Table 6.2. Line 5 has been modified
to avoid bias

sn∑
i=1

visn < 1/sr. (8.20)

Now consider sr = 2. If the distance to the optimizer is sufficiently large,
Eq. (8.20) is true in one out four cases only—the step-size adaptation is bi-
ased. Increasing step sizes are preferred. This bias enables the algorithm to
accelerate the search in the beginning, as can be seen in Fig. 8.9 on the left.
A similar argument shows that the bias is negligible for even sn values, which
leads to a decrease in performance (right panel in Fig. 8.9). Hence, the al-
gorithm is not able to find a vicinity of the optimum with the prespecified
budget of function evaluations due to too small step sizes (Fig. 8.10).

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

10
6

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze
; O

pt
. s

te
p

si
ze

 Sn:2, Sr:2 Sa:0.85 Su:3 Tau:0, startStep:1

function value
step size
opt. step size

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

10
6

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze
; O

pt
. s

te
p

si
ze

 Sn:3, Sr:2 Sa:0.85 Su:3 Tau:0, startStep:1

function value

step size

opt. step size

Fig. 8.9. Function values and step sizes. Left : The size of the memory vector is
sn = 2. The step sizes are increased during the first phase of the search. Right : The
size of the memory vector is sn = 3. From top to bottom: function values, optimal
step size, and step size. No sufficient increase in the step sizes occurs

8.2 Case Study I: How to Implement the (1 + 1)-ES 159

−100 −50 0 50 100
−100

−50

0

50

100
Sn=2, Sr=2

−100 −50 0 50 100
−100

−50

0

50

100
Sn=3,Sr=2

Fig. 8.10. Visualization. Left : The step size is increased in the first phase. Ap-
proaching the optimizer, it is reduced. Right : The step size cannot be increased; it
remains too small and prevents convergence

This effect occurs only for a success rate value sr = 2. After the algorithm
was modified as shown in Fig. 8.8, the bias could be avoided and the effect
disappeared. Hence, implementation details can have a significant influence
on the algorithm’s performance. For example, replacing “<” with “≤” can
have a significant impact on the performance of search heuristics: Jansen &
Wegener (2000) compared the (1 + 1)-EA to a variant, the so-called (1 + 1)∗-
EA, which accepts only the offspring whose function value is strictly better
(smaller) than the function value of its parent.

Furthermore, the first experiments show that under the assumptions spec-

ified in the problem design x
(0)
sphere (e.g., moderate initial step-size values and

starting points are not in the direct vicinity of the optimizer), the success
rate should be smaller than 0.5 to enable a proper increase in the step-size
values during the first phase of the search. We continue our search for good

parameter settings of the (1 + 1)-ES. Algorithm design x
(4)
ES (Table 8.4) was

used for these experiments.
A memory vector of size 3 leads to worse results. This effect occurs inde-

pendently from the starting value σ(0). It can be explained by considering the
changes in the step sizes for different sr values for a memory vector of length
sn = 3 (Table 8.3).

The probability of decreasing step sizes is too high if sr = 2, an sr value of
3 performs best, and sr = 4 results in step sizes that are too large, respectively.
A setting that enables a decrease in the step sizes, but prefers an increase if
successes occur, works best.

Similar considerations lead to the following result for sn = 4. If sr = 3,
then 6 (from 24 = 16) configurations decrease the step size. If sr = 4 only
one configuration decreases the step size, four are neutral, and 11 increase the
step size, and if sr = 5, 15 lead to an increase, and only one configuration
leads to a decrease. Therefore, sr = 4 seems to be a good choice if a memory
vector with sn = 4 is chosen.

160 8 Understanding Performance

Table 8.3. Effects of different sr values for a memory vector of length 3. The symbol
“−” denotes that the step size will be decreased, “o” denotes no change, and “+”
an increase. The probability of decreasing step sizes is too high if sr = 2, a sr value
of 3 performs best, and sr = 2 leads to too small, sr = 4 to too large step sizes,
respectively

v1 v2 v3 sr = 2 sr = 3 sr = 4

0 0 0 − − −
0 0 1 − o +
0 1 0 − o +
0 1 1 + + +

1 0 0 − o +
1 0 1 + + +
1 1 0 + + +
1 1 1 + + +

This knowledge can be used to predict the behavior of the (1 + 1)-ES.
Consider, for example, sn = 3: We expect a decrease in the step sizes if sr = 2;
the algorithm gets stuck before reaching the optimum. A value of sr = 4 might
result in step sizes that are too large, and we expect that a value of sr = 3
works fine. These assumption have been confirmed experimentally, as can be
seen in Fig. 8.11.

These experiments conclude the preexperimental planning phase (cf. step
(S-1), Sect. 7.5). Now we can formulate a scientific claim.

(C-8.1) It is better to choose a (1+1)-ES with a small memory vector (sn �
10d) if the number of function evaluations is restricted.

SPO as introduced in Sect. 7.5 can be applied next. It takes the depen-
dency of the algorithm’s performance on suitable chosen parameter values into
account. It can discover implementation details that are not predictable by
theory. Therefore we recommend SPO to detect good parameter settings at
this stage of the experimentation. Note that classical DOE techniques enable
the user to specify certain design points, whereas DACE sets design points
randomly in the latter. The user has to specify regions of interest.

Algorithm design x
(5)
ES from Table 8.4 was chosen to generate a Latin hyper-

cube design with 80 design points. Each design point was evaluated 10 times,
resulting in 800 algorithm runs during the first phase. As a result of the SPO

procedure, the improved design point x∗
ES (Table 8.4) has been detected.

The scientific thesis is broken down into several statistical hypotheses, e.g.,

(H-8.1) The (1 + 1)-ES that uses algorithm design x∗
ES (Table 8.4) performs

significantly better than the (1 + 1)-ES with default parameterization

x
(def)
ES , if problem design x

(0)
sphere is considered.

The final comparison is based on n = 500 runs. OSL plots and a com-
parison of the numerical data in Table 8.5 show that there is a difference in

8.2 Case Study I: How to Implement the (1 + 1)-ES 161

−100 −50 0 50 100
−100

−50

0

50

100
Sn =3, Sr = 2

−100 −50 0 50 100
−100

−50

0

50

100
Sn = 3, Sr = 3

−100 −50 0 50 100
−100

−50

0

50

100
Sn = 3, Sr = 4

Fig. 8.11. Visualization of the position of the candidate solution in the search
space. Only two dimensions are considered. A memory vector with sn = 3 was used.
Problem design x

(0)
sphere and algorithm design x

(4)
ES . The graphs show (from top to

bottom) runs with success rates 1/2, 1/3, and 1/4, respectively. The success rate 1/3
leads to the best results. These graphs support the hypotheses from above and the
considerations from Table 8.3

162 8 Understanding Performance

Table 8.4. Algorithm designs for the (1 + 1)-ES. The adaptation interval sn, the
success rate 1/sr, the step-size adjustment factor sa, and the update interval su

were defined in Table 6.2. An initial step-size value σ(0) = 1 was chosen for these
experiments. The values for the default (1 + 1)-ES were motivated in Fig. 8.5

Design sn sr sa su

x
(4)
ES 3 2:4 0.85 10

x
(def)
ES 300 5 0.85 30

x
(5)
ES 5:30 3:8 0.75:1:0.9 2:20

x∗

ES 9 3.97 0.78 11

Table 8.5. Experimental results from (1 + 1)-ES with default and improved algo-

rithm designs. Problem design x
(0)
sphere was used

Algorithm Mean Median SD Min Max minboot

x
(def)
ES 4436 4324 1322 1422 10253 3413

x∗

ES 4.04 2.90 3.97 0.14 32.22 1.60

means between these two algorithm designs. The difference is so overwhelm-
ing, no further statistical tests are necessary to validate the hypothesis that

x∗
ES performs better than x

(def)
ES on the 30 dimensional sphere, if only a budget

of 1000 function evaluations is available.
To illustrate why a smaller memory vector improves the performance we

plotted function values, step sizes, and optimal step sizes (cf. Eq. (8.17)). The
results from Fig. 8.12 demonstrate that (1+1)-ES is a good hill-climber, that
means it makes small steps, if small steps are advantageous, and large steps,
if large steps are better. Therefore, a large memory vector is obstructive for
this problem instance, because it prevents a flexible adaptation of the step
sizes. Furthermore, the experiments confirmed the 1/5 rule.

0 200 400 600 800 1000
10

0

10
2

10
4

10
6

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze
; O

pt
. s

te
p

si
ze

 Sn:300, Sr:5 Sa:0.85 Su:30 Tau:0, startStep:1

function value
step size
opt. step size

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

10
6

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze
; O

pt
. s

te
p

si
ze

 Sn:9, Sr:3.9681 Sa:0.78282 Su:11 Tau:0, startStep:1

function value
step size
opt. step size

Fig. 8.12. Function values, step size, and optimal step size. Left : default setting
x

(def)
ES , right : improved setting x∗

ES

8.3 Case Study II: The Effect of Thresholding 163

Summarizing, we can state that a working (1 + 1)-ES that performs sig-
nificantly better than the standard (1 + 1)-ES was found. We claim that this
result is scientifically meaningful, and, as a consequence, we recommend not

to use the default algorithm design x
(def)
ES with sn = 10d, if the number of

available function evaluations is low. As an important consequence, which has
an impact that goes beyond this case study, we can state that results from
algorithm comparisons become questionable, if the in-between variance, which
is caused by different parameter settings for one algorithm, is already higher
than the between-group variance.

We have demonstrated how a baseline for comparisons—especially for
stochastic search heuristics—can be defined. SPO or related techniques should
be applied in the first phase of these comparisons.

8.3 Case Study II: The Effect of Thresholding

The first case study was devoted to the question how to define a standard
that can be used for comparisons. Now we will extend this default algorithm
by implementing additional selection schemes. This procedure is referred to
in other contexts as hybridization.

Minimization of the d-dimensional sphere function
∑d

i=1 x2
i (Table 4.1),

disturbed by additive Gaussian noise ε ∼ N (0, σ2
ε), is considered. To analyze

the influence of three selection schemes on the performance of the (1 +1)-ES,
three algorithms are compared:

1. (1 + 1)-ES
2. TR, that is, the (1 + 1)-ES with positive τ values
3. TA, that is, the (1 + 1)-ES with negative τ values

Figure 8.13 illustrates the hybrid ES/TS algorithm.
Bartz-Beielstein (2005a) demonstrated that constant threshold values

worsen the performance of the (1 + 1) on the sphere if the function value
can be determined exactly. Here we will consider the noisy sphere.

8.3.1 Local Performance

Instead of analyzing the global performance, e.g., the mean function values
after 1000 function evaluations, we start with an analysis of the local per-
formance. Simulations were performed to analyze the influence of the thresh-
old value on the progress rate ϕ and on the success rate 1/sr as defined in
Sect. 7.2. Figure 8.14 describes the simulation procedure. The problem designs
are shown in Table 8.6. The corresponding hypothesis reads:

(H-8.2) Threshold selection produces better quality results than plus selec-
tion if the function values are disturbed by additive, Gaussian noise. The
results are independent of the test problem.

164 8 Understanding Performance

Procedure: (1 + 1)-ES/TS

Initialization: Initialize the iteration counter: t = 1. Determine: (i) a point X
(t)
1

with associated position vector x
(t)
1 ∈ R

d, (ii) a standard deviation σ(t), and

(iii) a threshold value τ (t). Determine the function value y1 = f(x
(t)
1).

while some stopping criterion is not fulfilled do

repeat M times:

Mutation: Generate a new point X
(t)
2 with associated position vector

x
(t)
2 as follows:

x
(t)
2 = x

(t)
1 + z, (8.21)

where z is a d-dimensional vector. Each component of z is the
realization of a normal random variable Z with mean zero and
standard deviation σ(t).

Evaluation: Determine the function value y2 = f(x
(t)
2).

Selection: Accept X
(t)
2 as X

(t+1)
1 if

y2 + τ (t) < y1, (8.22)

otherwise retain X
(t)
1 as X

(t+1)
1 . Increment t.

end.

Adaptation:
Update σ(t). Update τ (t). (8.23)

done.

Fig. 8.13. The hybrid evolution/threshold selection strategy (ES/TS). The two-
membered evolution strategy or (1+1)-ES for real-valued search spaces uses M = 1
and τ (t) ≡ 0. The symbol f denotes an objective function f : R

d → R to be
minimized. Threshold selection uses a constant step size σ(t) ≡ σ and a threshold
adaptation scheme

Table 8.6. Problem designs for the (1 + 1)-ES simulation runs. The progress rate
PRATE was chosen as a performance measure. Note that the sample size is denoted
by r. The starting point is chosen deterministically: x(0) = 1

Design r tmax d Init. Term. x(0) Perf. Noise

x
(1)
abs 105 1 1 DETEQ EXH 1 PRATE 1

x
(1)
id 105 1 1 DETEQ EXH 1 PRATE 1

x
(1)
sphere 105 1 1 DETEQ EXH 1 PRATE 1

8.3 Case Study II: The Effect of Thresholding 165

Procedure: (1+1)-ES simulation to approximate the one-generation progress
ϕ

Initialization: Initialize the sample counter i = 1. The index i has been sup-
pressed to improve readability. Choose one initial parent X1 with associ-
ated position vector x1 ∈ R

d. Choose the standard deviation σ ∈ R+, the
threshold value τ ∈ R, and the noise level σ2

ε .
repeat

Mutation: Generate a new point X2 with position vector x2 as follows:

x2 = x1 + z, (8.24)

where each component of the d-dimensional vector z is the realization
of random variable Z ∼ N (0, σ2).

Evaluation: Determine the function values

yj = f(xj), (8.25)

ỹj = f(xj) + wj , (8.26)

where wj are realizations of N (0, σ2
ε) distributed random variables Wj ,

j = 1, 2.
Selection: Accept X2 if

ỹ2 + τ < ỹ1, (8.27)

otherwise reject X2.
Progress: Determine

δi =

j
x1 − x2, if X2 was accepted,
0, otherwise.

(8.28)

Increment i.
until r samples have been obtained.

Return
Pr

i=1 δi/r, an estimate of the expected progress ϕ from generation g to
g + 1, see (PM-7.14) in Sect. 7.2.

Fig. 8.14. (1 + 1)-ES simulation to study the effect of threshold selection on the
progress rate ϕ

To reject hypothesis (H-8.2), we have to find a test function on which the
(1+1)-ES performs better than the (1+1)-TS. We consider three candidates:
the absolute value function (abs), the identity function (id), and the sphere
function (sphere). A constant noise level σ2

ε = 1, the starting point x(0) = 1,
and the step size σ = 1 have been chosen for these experiments. Figure 8.15
illustrates the results.

The approximated progress rate ϕ is plotted against the threshold value τ .
Positive ϕ values are better, because ϕ is the expected change in the distance of

166 8 Understanding Performance

−15 −10 −5 0 5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Threshold τ

P
ro

gr
es

s
ph

i

 |x|
 x

1

 x2

Fig. 8.15. Three different functions: abs, id, and sphere and related problem de-

signs x
(1)
abs, x

(1)
id , and x

(1)
sphere , respectively, from Table 8.6. Results from the simulation

study described in Fig. 8.14 to analyze the effect of TS on the progress rate. Progress
rate ϕ plotted against threshold value τ . Noise σ2

ε = 1, starting point x(0) = 1, and
step size σ = 1. These results indicate that threshold selection produces worse re-
sults on the identity function, whereas positive effects could be observed on x

(1)
abs and

x
(1)
sphere

the search point to the optimum in one generation. The results from this study
show that threshold acceptance (τ ≤ 0) can improve the progress rate on the
absolute value function and on the sphere function. But threshold acceptance
worsens the performance on the identity function (id). And threshold rejection
(τ > 0) worsens the progress rate in any case.

What are the differences between id, abs, and sphere? The starting point
x(0) was chosen in the immediate vicinity of the global minimizer x∗ of the
test functions abs and sphere. This closeness to the optimum might explain
the effect of the threshold selection scheme. This consideration leads to the
next hypothesis:

(H-8.3) Threshold selection produces better quality results than plus selec-
tion in the vicinity of the global minimizer x∗, if the function values are
disturbed by additive, Gaussian noise. The results are independent of the
test problem.

The problem design in Table 8.7 was used to perform the experiments. As
before, the simulation procedure shown in Fig. 8.14 was used to approximate
the one-step progress rate ϕ.

The results (not shown here) indicate that the starting point x(0) influ-
ences the threshold selection scheme. The optimal threshold value decreases
(becomes negative) as the distance of the starting point x(0) to the optimum
x∗ is reduced. A similar effect could be observed for the absolute value func-

8.3 Case Study II: The Effect of Thresholding 167

Table 8.7. Problem design for the (1 + 1)-ES simulation runs. The distance to the
optimum of the starting point is varied

Design r tmax d Init. Term. xl xu Perf. Noise

x
(2)
abs 105 1 1 DETMOD EXH 1 10 PRATE 1

x
(2)
id 105 1 1 DETMOD EXH 1 10 PRATE 1

x
(2)
sphere 105 1 1 DETMOD EXH 1 10 PRATE 1

tion abs. The influence of the TS scheme vanishes if the starting point x(0) = 2
was chosen.

Both functions, abs and sphere, are convex. Recall that a function f(x)
is convex on an interval [a, b] if for any two points x1 and x2 in [a, b],

f

(
1

2
(x1 + x2)

)
≤ 1

2
f(x1 + x2).

A function f(x) is strictly convex if f
(

1
2 (x1 + x2)

)
< 1

2f(x1 + x2). That is,
a function is convex if and only if its epigraph (the set of points lying on
or above the graph) is a convex set. The sphere function x2 and the absolute
value function |x| are convex. The function id(x) = x is convex but not strictly
convex. Thus, the next hypothesis reads:

(H-8.4) Let f denote a strictly convex test function. Threshold acceptance
produces better quality results than plus selection in the vicinity of the
global minimizer x∗ of f if the function values are disturbed by additive,
Gaussian noise.

To test hypothesis (H-8.4), we simulate the (1 + 1)-ES on the bisecting line
cosine function (bilcos). This function has infinitely many local minimizers
xi = 2i + ε and infinitely many local maximizers xi = 2i − 1 − ε, with i ∈ Z

and ε = sin−1(1/π)/π ≈ −.1031.
Figure 8.16 illustrates the results from these simulations: The (1 + 1)-

ES with threshold acceptance performs better with threshold acceptance if a
starting point x(0) in the neighborhood of a local minimum is chosen. Thresh-
old rejection improves the approximated progress rate in the neighborhood of
a local maximum. A zero threshold value is best if x(0) is placed between two
local optima. This simulation study demonstrated that the curvature influ-
ences the optimal threshold value: The (1 + 1)-ES with threshold acceptance
performs better on strictly convex functions than the (1 +1)-ES, whereas the
(1 + 1)-ES with threshold rejection performs better than the (1 + 1)-ES on
strictly concave functions.

The next experiments to refine our hypothesis are conducted to analyze
the influence of the noise level σ2

ε . Therefore, we state:

(H-8.5) Let f (g) denote a strictly convex (concave) test function. Threshold
acceptance (rejection) produces better quality results than plus selection

168 8 Understanding Performance

−5 0 5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Threshold τ

P
ro

gr
es

s
ph

i

2

2.5

3

3.5

4

Fig. 8.16. Progress rate ϕ and threshold selection. Bisecting line cosine function
bilcos. Curves represent results from experiments with different starting points
x(0) ∈ {2, 2.5, 3, 3.5, 4}. A positive threshold value improves the performance if the
simulation is started from a local maximum, i.e., x(0) = 3

in the vicinity of a local minimum (maximum) of f (g) if the function
values are disturbed by additive, Gaussian noise. The optimal threshold
value τ∗ increases as the noise level σ2

ε grows.

Experiments varying the noise level σ2
ε (not presented here) gave no indication

that (H-8.5) is wrong. If the noise level is very high, threshold selection cannot
improve the progress rate. The influence of the TS is only marginal for small
noise levels.

Global Performance

The analysis from the previous section considered the local performance of
the (1 + 1) algorithms. The progress rate PRATE was used to measure the
one-generation improvement. To analyze the global performance, other per-
formance measure will be used. A commonly used measure is the mean value
from n runs. In addition to this measure, the median, standard deviation,
minimum, maximum values, and the minboot value will be reported.

Based on considerations developed by Markon et al. (2001), we imple-
mented the threshold adaptation as

τ (t) =
σ2

ε d

2y
(t)
1

, (8.29)

where d denotes the problem dimension, σε the noise level, and y
(t)
1 the func-

tion value at time step t. The problem design x
(1)
sphere (Table 8.8) was used in

this study.

8.3 Case Study II: The Effect of Thresholding 169

Table 8.8. Problem design x
(1)
sphere for the experiments performed in this section.

The experiment’s name, the number of runs n, the maximum number of function
evaluations tmax, the problem’s dimension d, the initialization method, the termi-
nation criterion, the starting point for the initialization of the object variables x(0),
as well as the optimization problem, the performance measure (PM), and the noise
level are reported

Design Init. Term. PM n tmax d x(0) Noise

x
(1)
sphere DETEQ EXH MBST 50 1000 30 100 1

The scientific claim reads:

(C-8.2) Threshold rejection improves the performance of the (1 + 1)-ES on
the noisy sphere.

We have to break this thesis down to formulate hypotheses that can be tested
statistically. A related statistical hypothesis reads “Given problem design

x
(1)
sphere (Table 8.8), threshold rejection outperforms the (1 + 1)-ES and the

threshold acceptance strategy.”
We applied SPO to determine improved algorithm designs for each al-

gorithm (Table 8.9): x	
ES for the (1 + 1)-ES, x	

TR for the threshold rejection
strategy, and x	

TA for the threshold acceptance strategy, respectively. A com-
parison based on these designs with n = 500 runs is performed. An inspection
of the results (Table 8.10) shows that just the opposite of the expected behav-
ior occurred: Threshold rejection worsens the performance of the algorithm,
whereas threshold acceptance improves the performance with the exceptions
of two performance measure.

An interpretation of the scientific meaning of these results is difficult.
The analysis reveals that TA performs better than the (1 + 1)-ES on aver-
age, but the standard (1 + 1)-ES was able to detect lower function values
(Table 8.10). Using the minboot procedure, the difference becomes smaller.
Histograms would also display these relation graphically.

Table 8.9. Improved algorithm designs for the (1 + 1)-ES, TR, and TA optimizing
the noisy sphere: x�

ES, x�
TR, and x�

TA, respectively. The adaptation interval sn, the
success rate 1/sr, the step-size adjustment factor sa, and the update interval su

were defined in Table 6.2. An initial step-size value σ(0) = 1 was chosen for these
experiments

Design sn sr sa su

x�
ES 15 4.06 0.79 10

x�
TR 10 4.76 0.85 11

x�
TA 12 5.52 0.72 12

170 8 Understanding Performance

Table 8.10. Experimental results from (1 + 1)-ES with default and improved al-

gorithm designs. Problem design x
(1)
sphere was used. These experimental data suggest

that threshold acceptance has a positive influence on the performance of the (1+1)-
ES, whereas threshold rejection worsens its performance. Best results are printed in
boldface

Algorithm Mean Median Sd Min Max minboot

x�
ES 19.4 17.91 8.28 5.33 69.28 13.40

x�
TR 20.97 20.05 7.64 7.92 91.61 15.50

x�
TA 17.56 15.69 7.16 7.50 69.29 13.09

Figure 8.17 supports the hypothesis that TA can improve the performance
of a (1 + 1)-ES in the vicinity of an optimum. We suggest that this result is
caused by the following algorithm behavior:

1. As threshold acceptance increases the success rate, small step sizes are
avoided. TA increases the success rate erroneously in some cases, and new
candidates are accepted that are only seemingly better than the actual
best. Recall that threshold acceptance increases the type-I error (Eq. 3.2).

2. Threshold rejection decreases the success rate, which leads to smaller step
sizes. Even better candidates are sometimes rejected. Recall that threshold
rejection reduces the error of the first kind.

Threshold acceptance as implemented here (cf. Eq. 8.29) has nearly no
influence on the performance of the algorithm during the first phase of the
search. Furthermore, OSL plots (Fig. 8.18) can provide valuable information
for this interpretation. Finally, the experimenter has to interpret the optimiza-
tion scenario—which specifies whether one good solution or solutions that are
good on average are requested—to decide if threshold acceptance should be
used.

0 200 400 600 800 1000
10

−5

10
0

10
5

10
10

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze
; O

pt
. s

te
p

si
ze

; T
au Sn:12, Sr:5.5217 Sa:0.72437 Su:12, startStep:1

function value
step size
opt. step size
tau

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

10
6

Function evaluations

F
un

ct
io

n
va

lu
e;

 S
te

p
si

ze
; O

pt
. s

te
p

si
ze

 Sn:12, Sr:5.5217 Sa:0.72437 Su:12 Tau:0, startStep:1

function value
step size
opt. step size

Fig. 8.17. Function values and step sizes. Threshold acceptance prevents small step
sizes in the final phase of the (1 + 1)-ES run

8.4 Bounded Rationality 171

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Difference δ

O
bs

er
ve

d
si

gn
ifi

ca
nc

e
le

ve
l α

n=10
n=50
n=500

Fig. 8.18. OSL plot. Observed significance plot for the (1+1)-ES and the (1+1)-ES
with threshold acceptance. There is a difference in means, but the observer has to
decide whether this difference is significant or not. This is neither case RE-2.1 nor
case RE-2.2, cf. Sect. 2.5.4

8.4 Bounded Rationality

Simon’s (1955) concept of bounded rationality considers

1. cognitive limits of actual humans
2. environments that permit simplifications of rational decision making

Gigerenzer & Selten (2002) note that optimization is often based on uncertain
assumptions (guesswork), and there maybe about as many different outcomes
of optimization strategies as there are sets of assumptions: “In these real-
world cases, it is possible that simple and robust heuristics can match or even
outperform a specific optimization strategy.” Imitation, equal weighting, take
the best, take the first, and small-sample inferences are examples of fast and
frugal heuristics (Goldstein et al. 2002). Another example, where a simple
model outperforms a complex model, is given by Forster & Sober (1994).

Example 8.1 (Overfitting). Curve fitting in classical and modern regres-
sion analysis consists of two steps. A family of curves is selected first, i.e.,
linear, quadratic, or more sophisticated functions. Simple curves are preferred
in this step; consider the situation depicted in Figure 8.19. In a second step
the curve in that family that fits the data best is selected. To perform the
second step some measure of goodness-of-fit is necessary.

Simplicity and goodness-of-fit are two conflicting goals. Therefore, the fol-
lowing question arises: Why should the simplicity of a curve have any rel-
evance to our opinions about which curve is true? Including the prediction
error to these considerations provides a deeper understanding. A result in

172 8 Understanding Performance

statistics from Akaike shows how simplicity and goodness-of-fit contribute to
a curve’s expected accuracy in making predictions (Kieseppä 1997). The pre-
dictive power of the curve is more important than its fit of the actual data.
Curves that fit a given data set perfectly will usually perform poorly when
they are used to make predictions about new data sets, a phenomenon known
as overfitting. �

Fig. 8.19. Simplicity
of curves. Linear (A)
and cubic (B) curves.
Imagine a third curve
(C) that fits every
data point. Why do
scientists prefer curve
(B)?

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y
(A)

(B)

Threshold selection, the (1+1)-ES, and the 1/5 success rule can be classified as
simple and robust heuristics. They avoid overfitting, because they only use a
minimal amount of information from the environment. Under this perspective,
algorithm tuning as introduced in Chap. 7 can be seen as an analogue to
curve fitting (Chap. 3): Algorithms with more exogenous strategy parameters
enable a greater flexibility for the cost of an expensive tuning procedure.
Poorly designed algorithms can cause “overfitting”—they are able to solve one
specific problem only. Domain-specific heuristics require a moderate amount
of information from the environment.

Does the environment permit a reduction of the required amount of infor-
mation for decision making or optimization? Although simple heuristics often
work well, they can be misled easily if they are used in unsuitable environ-
ments. Consider, for example, the 1/5 rule: Its validity is not restricted to the
sphere function. However, Beyer (2001) describes fitness landscapes in which
the 1/5 rule fails, for example, when the objective function is not continuously
differentiable in the neighborhood of the parental position vector. Recognizing
the situations in which domain-specific heuristics perform better than other
strategies provides a better understanding of their mechanisms. Understand-
ing is seen here as to figure out in which environments a simple tool can match
or even outperform more complex tools. Gigerenzer et al. (1999) use the term
“ecological rationality” for this concept.

8.6 Further Reading 173

8.5 Summary

The basic ideas from this chapter can be summarized as follows:

1. Indifference zone approaches require the specification of the distance δ∗

and the probability of a correct selection P ∗. The indifference zone pro-
cedure (Fig. 8.1) assumes known and common variances.

2. Subset selection requires the specification of the number of samples r and
the probability of a correct selection P ∗.

3. Threshold selection requires the specification of the number of samples r
and the probability of a correct selection P ∗.

4. The probability of a correct acceptance P ∗ in TS is related to the error
of the first kind in hypothesis testing.

5. Factorial designs are useful to detect interactions.
6. Implementation details can have a significant influence on the algorithm’s

performance.
7. An annealing schedule can be used to adapt the probability of a correct

acceptance during the search process of an optimization algorithm.
8. Threshold selection can be interpreted as a rule of inductive behavior, or

as an automatic testing rule.
9. Selection schemes require the specification of scientifically important dif-

ferences. The determination of these values lies outside the domain of
statistics.

10. The 1/5 rule has to be modified if the function values are disturbed by
noise.

11. Threshold selection can be characterized as a fast and frugal heuristic for
decision making under uncertainty. Obviously, TS does not work in every
environment.

8.6 Further Reading

Bechhofer et al. (1995) give an in-depth presentation of methods for statistical
selection, screening, and comparisons. Branke et al. (2005) compare ranking
and selection methods. Schwefel (1995), Rudolph (1997a), and Beyer (2001)
present further analyses of evolution strategies. Arnold & Beyer (2003) and Jin
& Branke (2005) discuss optimization algorithms in noisy environments. Ru-
binstein (1998) and Gigerenzer & Selten (2002) introduce models of bounded
rationality. The concept of simple heuristics is presented in (Gigerenzer et al.
1999).

9

Summary and Outlook

It is good to have an end to journey toward;
but it is the journey that matters, in the end.

—Ernest Hemingway

Now that we have reached the end of an exploratory tour during which we
discussed a broad spectrum of ideas from computer science, philosophy of
science, and statistics, it is time to summarize the basic achievements. To
compare different objects is a basic human activity. Decisions are based on
comparisons. However, the accuracy of the observed data that are necessary
for comparisons is limited in many real-world situations.

Statistics provides a means to cope with this uncertainty or “noise”. Al-
though computer science is built on deterministic grounds, it can be advan-
tageous to introduce uncertainty or randomness. One famous example is the
quick-sort algorithm, where randomness is introduced to implement the selec-
tion procedure. Another important field is stochastic search algorithms which
started their triumphal procession in the 1960s. Nowadays, stochastic search
algorithms belong to the standard repertoire of every optimization practi-
tioner who has to solve harder problems than just “toy” problems. However,
their enormous flexibility complicates their analysis. The approach presented
in this book suggests treating program runs as experiments to enable a sta-
tistical analysis.

9.1 The New Experimentalists

Experiments have a long history in science, but their role changed drasti-
cally over recent centuries. They have been downplayed by Aristotelians, who
favored deduction from first principles for a long time. But the scientific rev-
olution of the seventeenth century declared the experimental method as the
“royal road to knowledge.” The first scientific journals that presented ex-
perimental results and deductions from experiments were established at that
time—a completely different situation to the theoretically oriented contents of
modern scientific journals. Hacking (1983), one of the most influential contem-
porary philosophers of science, proposes to “initiate a Back-to-Bacon move-
ment, in which we attend more seriously to experimental science.” His slogan

176 9 Summary and Outlook

“an experiment may have a life of its own” points to several new experi-
mentalist themes, but it does not claim that experimental work could exist
independently of theory. “That would be the blind work of those whom Bacon
mocked as ‘mere empirics’. It remains the case, however, that much truly fun-
damental research precedes any relevant theory whatsoever” (Hacking 1983).

Ian Hacking, Robert Ackermann (1989), Nancy Cartwright (1983, 2000),
Allen Franklin (1990), Peter Galison (1987), Ronald Giere (1999), and Debo-
rah Mayo (1996) belong to a group of philosophers of science who share the
thesis that “focusing on aspects of experiments holds the key to avoiding or
solving a number of problems, problems thought to stem from the tendency to
view science from theory-dominated stances.” Ackermann (1989) introduced
the term “new experimentalists.” One major goal of the new experimental-
ists is to develop statistical tools for generating reliable data from experi-
ments and using such data to learn from experiments. Mayo (1996) proposes
a modern theory of statistical testing and learning from error. This book is
an attempt to establish a modern theory of statistical testing in computer
science, especially in evolutionary computation. The new experimentalism in
evolutionary computation has its roots in the actual debate over the episte-
mology of experimentation in philosophy. Based on the ideas presented by the
new experimentalists, in particular on Mayo’s learning from error and her
concept of severity, a methodology for performing and analyzing computer
experiments has been developed. By controlling the errors that occur during
experimentation, we can gain insight into the dependencies and interactions
of important factors.

The new experimentalists extend Popper’s position that only hypotheses
that are in principle falsifiable by experience should count as scientific. The
resulting consequences from this position have been widely discussed in recent
decades, so we mention only one problem that arises from the Popperian view:
Hypotheses require assumptions. A serious problem arises when we have to
decide whether the hypothesis itself or the supporting assumption is wrong.
Moreover, these assumptions require additional assumptions, which leads to
an infinite regress.

9.2 Learning from Error

This book discusses various ways to pose the right questions, to measure the
performance of algorithms, and to analyze the results. However, the statistical
analysis is only the first part of the investigation, that is, it is the beginning,
and not the end. We learn about algorithms by being perspicacious investi-
gators knowing how to produce errors. Actively generating errors is a major
step forward in understanding how algorithms work. Various sources of error
in the context of evolutionary computation are pointed out. Errors can be
caused by the selection of an inadequate test function, erroneously specified
experimental designs, wrongly specified experimental goals, inadequately se-

9.2 Learning from Error 177

lected performance measures, and misinterpretations of the experimental or
the statistical results. These errors, which were mentioned in Chap. 1, are
revisited now. Means to master Problems 1.1 to 1.4 and additional ones that
occurred during our analyses are:

Answer (to Problem 1.1). The lack of standardized test functions, or
benchmark problems. Problems related to test suites were discussed in Chap. 4.
We developed an elevator simulation model (S-ring) that can be used to gen-
erate test problem instances. The results are of practical relevance. They are
based on an intensive cooperation with one of the world’s leading elevator
manufacturers (Markon et al. 2001; Beielstein & Markon 2002; Beielstein
et al. 2003a, b; Bartz-Beielstein et al. 2003c, 2005c; Bartz-Beielstein & Markon
2004). A complete book is devoted to the S-ring model and related optimiza-
tion problems (Markon et al. 2006).

Suganthan et al. (2005) accentuate the need to evaluate test functions “in a
more systematic manner by specifying a common termination criterion, size of
problems, initialization scheme, linkages/rotation, etc. There is also a need to
perform a scalability study demonstrating how the running time/evaluations
increase with an increase in the problem size.” They established a special
session on real-parameter optimization during CEC 2005. A new standard
test suite which includes some real world problems was proposed.

The development of realistic test suites is necessary, but only the first step.
It should be complemented with the development of statistical tools, e.g., tests
as learning tools (cf. Chap. 2).

Answer (to Problem 1.2). The usage of different (or inadequately selected)
performance measures. We distinguish different performance measures to an-
alyze algorithms, e.g., efficiency and effectivity. This classification is based
on ideas that Schwefel (1977) presented nearly three decades ago. Nowadays
it is a well-accepted fact that there is no computer algorithm that performs
better than any other algorithm in all cases (Droste et al. 2000). However, the
interaction between the problem (environment, resources) and the algorithm
is crucial for its performance. To demonstrate an effect, a test problem that is
well-suited to the solver (algorithm) must be chosen. Ceiling effects can make
results from computer experiments useless. They occur when every algorithm
achieves the maximum level of performance—the results are indistinguishable.
Floor effects arise when the problem is too hard, so no algorithm can produce
a satisfactory solution and every statistical analysis will detect no difference
in the performance. Statistical methods such as run-length distributions have
been proposed to tackle this issue. This problem was addressed in Chap. 7.

Answer (to Problem 1.3). The impreciseness of results, and therefore no
clearly specified conclusions. To prevent misinterpretations of the experimental
results, guidelines from experimental algorithmics are recommended. These
guidelines, e.g., to state a clear set of objectives, or to formulate a question
or a hypothesis, have been extended and reformulated from the perspective

178 9 Summary and Outlook

of an error statistician in this work. Analysis of variance methods as well as
regression methods and hypothesis testing were presented in Chaps. 3 and 7.

Answer (to Problem 1.4). The lack of reproducibility of experiments. Erro-
neously specified experimental designs, e.g., wrongly selected exogenous strat-
egy parameters or problem parameters, can cause this problem. Designs play
a key role in this context: The concept of problem and algorithm designs
is consequently realized. Experimental designs are used to vary and control
these errors systematically. The experimenter can screen out less important
factors and concentrate the analysis on the relevant ones. To give an exam-
ple: Evolutionary algorithms produce random results. The experimenter can
vary the input parameters of the algorithm, e.g., change the recombination
operator. This leads directly to the central question “How much variance in
the response is explained by the variation in the algorithm?” Statistical tools
that are based on the analysis of variance methodology can be used to tackle
this question. Classical ANOVA and modern regression techniques like tree-
based regression or design and analysis of computer experiments (DACE)
follow this principle. Another basic tool to perform a statistical analysis is
hypothesis testing.

We are not the first to use design of experiments techniques to analyze algo-
rithms. However, the first attempts to apply design of experiments techniques
to evolution strategies and particle swarm optimization have been presented
in Beielstein et al. (2001) and Beielstein & Markon (2001). We have developed
the sequential parameter optimization method: SPO combines methods from
classical DOE, computational statistics, and design and analysis of computer
experiments. Results from the SPO can be analyzed with NPT∗ tools: The
experimenter can learn from errors while improving an algorithm, see also
Problems 9.1 and 9.2. We consider the NPT∗ analysis as the crucial step in
the analysis of computer algorithms. Experimental designs have been intro-
duced in Chap. 5.

In addition to these problems listed by Eiben & Jelasity (2002), the following
problems are of importance:

Problem 9.1. Wrongly specified experimental goals. Gary Klein (2002) uses
the term “fiction of optimization” to characterize this problem.

Answer. Boundary conditions that are necessary to perform optimization
tasks have been discussed in Sect. 7.1. Specifying and analyzing boundary
conditions is in accordance with Mayo’s concept of learning from error and
one important step of the SPO approach. Experimental goals were discussed
in Chap. 7.

Problem 9.2. Misinterpretations of the statistical results. Serious problems
arise when statistical significance and scientific meaning are not distinguished.

9.3 Theory and Experiment 179

Answer. Introducing different models provides statistical tools to deal with
this problem. Based on NPT∗, Mayo’s extension of the classical Neyman–
Pearson theory of statistical testing, we developed statistical tools that allow
the objective comparison of experimental results. Misconstruals can occur if
statistical tests are not severe. Consider, for example, the first misconstrual
(MC-1) from Sect. 2.5 that can be accomplished by increasing the sample size
n or by reducing the significance level:

A test can be specified that will produce a result that exceeds a pre-
specified difference by the required difference. As a consequence, the
null hypothesis H is rejected, even if the true difference exceeds the
prespecified difference by as little as one likes.

We developed plots of the observed significance level (OSL) as key elements
for an extended understanding of the significance of statistical results. They
are easy to interpret and combine information about the p-value, the sample
size, and the experimental error. A bootstrap procedure to generate OSL plots
independently from any assumptions on the underlying distribution was intro-
duced. Misinterpretations of the statistical results were discussed in Chaps. 3
and 8.

9.3 Theory and Experiment

This book does not solely transfer concepts to compare and improve algo-
rithms from statistics to computer science. It presents a self-contained exper-
imental methodology that bridges the gap between theory and experiment.
The advantage of applying results from theory, for example, Beyer (2001),
to real-world optimization problems can be analyzed in an objective manner.
However, as a consequence of our considerations, the interpretation of the
scientific import of these results requires human experience, or the “experi-
menter’s skill.”

Why is the experimenter’s skill central in our argumentation? The exper-
imenter’s skill comprises the ability to get the apparatus to indicate phenom-
ena in a certain way. Numerous examples from the history of science can be
listed in which the invention of a new apparatus enables the experimenter
to perform another investigation. Results from these experiments defined the
route that the theoreticians must follow. Gigerenzer’s (2003) tool-to-theory
approach extends this idea from technical apparatus to abstract entities such
as statistical procedures. We summarize an example presented in Hacking
(1983) to illustrate our argumentation.

Example 9.1 (The Faraday Effect). The Faraday effect, or magneto-op-
tical effect, describes the rotation of the plane of polarization (plane of vibra-
tion) of a light beam by a magnetic field (Encyclopaedia Britannica Online
2001). Being a deeply religious man, Michael Faraday (1791–1867) was con-
vinced that all forces in nature must be connected. At that time the Newtonian

180 9 Summary and Outlook

unity of science was in confusion due to several important discoveries, i.e., the
wave theory of light. Faraday unsuccessfully tried to establish a connection
between electrification and light in 1822, in 1834, and in 1844. In 1845 he gave
up and tried to discover a connection between the forces of electromagnetism
and light. Using a special kind of dense glass, which had been developed earlier
in a different context, he discovered the magneto-optical effect. Faraday had
no theory of what he found. One year later, G.B. Airy integrated the exper-
imental observations into the wave theory of light simply by adding some ad
hoc further terms to the corresponding equations. “This is a standard move
in physics. In order to make the equations fit the phenomena, you pull from
the shelf some fairly standard extra terms for the equations, without knowing
why one rather than another will do the trick.” Only 47 years later, in 1892,
H.A. Lorentz combined models proposed by Kelvin and adapted by Maxwell
with his electron theory. �

This example nicely illustrates several levels of theory. Theory, as mentioned
earlier, can be characterized as speculation: It can be seen as the process
of restructuring thoughts or playing with ideas that are based on a qualita-
tive understanding of some general features from reality. However, there is
no direct link between theory and experiment. Most initial thoughts are not
directly testable. Here calculation comes into play. Calculation is the math-
ematical formulation to bring speculative thoughts into accordance with the
world and to conduct an experimental verification. Calculation is the first part
to bridge the gap between theory and experiment.

We have not left the classical, hypothetico-deductive grounds so far. How-
ever, to bring theory in accordance with reality is not simply a matter of cal-
culation. To do this requires more than just quantifying speculative thoughts.
The idea of beginning with speculations that are gradually cast into a form
from whence experimental tests can be deduced, appears to be attractive—
but it is incomplete. A very extensive activity is necessary: model building.
Models can be all sorts of things (recall the discussion in Sect. 2.4). It is crucial
for our reasoning that they can coexist in theory. Despite the common under-
standing that at most one model can be true, several models of the physical
world can be used indifferently and interchangeably in the theoretical context.
Hacking presents a typical sentence from a physics textbook as an illustrative
example:

For free particles, however, we may take either the advanced or re-
tarded potentials, or we may put the results in a symmetrical form,
without affecting the result (Mott & Sneddon 1948).

Hence, models are not merely intermediaries that connect some abstract as-
pects of real phenomena by simplifying mathematical structures to theories
that govern the phenomena. Why can physicists use a number of mutually
inconsistent models within the same theory? Recalling the ideas presented in
Chap. 1, we can state that models are the central elements of science. Models

9.4 Outlook 181

are more robust than theory, that is, “you keep the model and dump the the-
ory.” The number of models scientists use in their daily routine increases from
year to year. Maybe there will be one unified theory of all in some years—but
“that will leave most physics intact, for we shall have to do applied physics,
working out what happens from case to case” (Hawking 1980).

Approximations appear to be a solution to bridge the gap between models
for theory and models for reality. But the number of possible approximations is
endless, and the correct approximation cannot be derived from theory. Going
one step further, Nancy Cartwright claims that “theory itself has no truth in
it” (Cartwright 1983, 2000). We follow Hacking (1983), who gives a descriptive
characterization of the interplay between theories, models, and reality:

I myself prefer an Argentine fantasy. God did not write a Book of
Nature of the sort that the old Europeans imagined. He wrote a Bor-
gesian library, each book of which is as brief as possible, yet each book
of which is inconsistent with each other. No book is redundant. For
every book, there is some humanly accessible bit of Nature such that
that book, and no other, makes possible the comprehension, predic-
tion and influencing what is going on. Far from being untidy, this is
the New World Leibnizianism. Leibniz said that God chose a world
which maximized the variety of phenomena while choosing the sim-
plest laws. Exactly so: but the best way to maximize phenomena and
have the simplest laws is to have the laws inconsistent with each other,
each applying to this or that but none applying to all.

The methodology presented in this book may be the missing link needed by the
practitioner to consciously apply theoretical results to practical problems—
and by the theoretician to explore new ideas and to confront speculations
with reality. Figure 9.1 illustrates a modified view of the relationship between
theory and experiment from Chap. 1.

9.4 Outlook

The items discussed in this book suggest various routes for further research.
We will list some of them.

The experimental approach presented in this work may lay the cornerstone
for a “Borgesian library” in evolutionary computation. Consider a theory T1,
e.g., entitled “Evolutionary Algorithms in Theory,” and a theory T2, entitled
“The Theory of Evolution Strategies” (Fig. 9.1). Both theories use models as
tools for representing parts of the world (or the theory) for specific purposes.
We distinguished representational models, which represent a certain part of
the world, from instantial models, that are used to present abstract entities.
Performing experiments, data can be generated to test the fit of the model
with some part of the world or with some theory. As models are limited per
definitionem, they may contain laws that are inconsistent with each other.

182 9 Summary and Outlook

Fig. 9.1. A second attempt to model the relationship between theory and practice.
The first attempt (Fig. 2.1) is reconsidered. Different theories and models, even
with conflicting laws, coexist. The variables ti denote the time-dependency of some
theories. Speculation can be interpreted as “playing with ideas,” calculation brings
speculative thoughts in accordance with models, and experimentation tests the fit
of models with the world

And, not only models for different theories may contain conflicting laws—even
models that are used within one theory might lead to different conclusions.
At this point the approach presented in this book becomes relevant: The
experimenter can use statistical tools to investigate the error probabilities
by “actively probing, manipulating, and simulating patterns of error, and
by deliberately introducing known patterns of error into the collection and
analysis of data”(Mayo 1996). Consider two scenarios:

1. Experimental designs (Chap. 5) provide means to specify the essential
conditions in an objective manner. Optimization practitioners can consult
a “book from the problem design section of the library” and look up
a candidate algorithm that might be able to solve their problem. This
algorithm will not be used directly with some default parameter settings—
it will be tuned before the optimization run is performed.

2. Researchers will base the comparison of different algorithms not on their
default parameterizations, but on the tuned versions. The SPO (or a
similar method) enables an algorithmical tuning process with traceable
costs.

Consequently, a tool box with many different algorithms, e.g., as suggested
by Schwefel (1995), “might always be the ‘optimum optimorum’ for the prac-
titioner.” The methods presented in this work might give some valuable advice
for the selection of an appropriate tool.

9.4 Outlook 183

�

�

�

�

�
�
�

�

�

�

�
�

�

�

�

�

�
�
�

�

�

�

�
�

�

�

�

�

�
�
�

�

�

�

�
�

�

�

�

�
�
�
�

�

�

�

�
�

�

�

�

�

�
�
�

�

�

�

�
�

� � � �

� 	

� � � � 	

� � 	 �

� � � � � � � � �

� 	 � � � � � � � � � � �

� � � � � � � � � � � � � 	 � � � � � � � � � � �

� � � � � � � � � � � � 	 � � � � � � � � � � �

� � � � � � � � � � � � � 	 � � � � � � � � � � �

� � � � � � � � � �
� 	 � � � � � � � � � � �

� � � � � � �

� � � � � � � �

� � � 	
 � !

� � 	

� � � 	 � � !

� � 	 �

� � � 	 � � !

� � 	 �

� � � 	 � � !

� � 	 �

� !

� ! �

	 " # � � � � � � � � � � $ � % " � & &

	 " # � � � � � � � � � � � � � � � $ � � � � � � �

� � � � � 	 � ' � � � (

� � � � � �) � � � � � � � � � � �

� � � � � �) � � � � � � � � � � �

� � � � � �) � � � � � � � � � � �

� � � � � �) � � � � � � � � � � �

	 � � * + � � � � � � � � � � �

	 � � * + � � � � � � � � � � � �

	 � � * + � � � � � � � � � � � �

	 � � * + � � � � � � � � � � � �

	 � ' � � � (, � � & - � . # , � � � (- � � / � � /

	 � � * + � � � � � � � � � � � �

! � & 0 . � � � � � � � � � � � � $ � % " � & &

Fig. 9.2. An evolution strategy applied to optimize the design of a nonsharp separa-
tion sequence. The German words “Sequenz-Auswahl-Verzweigung,” “Ströme Vari-
ante,” and “Mischer” can be translated to English as “sequence-branching point,”
“stream variant,” and “mixer,” respectively. SPO could significantly improve the
performance of the ES. Source: Frank Henrich, RWTH Aachen, private communi-
cation

Recent discussions indicated a great demand for an automated version of
the sequential parameter optimization procedure (Chap. 7). The development
of such an automated tool is—at least from our perspective—a conflicting goal,
because the user does not “see” what happens during the design optimization.
However, SPO will gain acceptance and influence, if we keep the complexity
that is necessary to apply SPO as low as possible. A first implementation of
an automated SPO is under development (Bartz-Beielstein et al. 2005b).

SPO has been proven useful in other problem domains. We mention one
result from the chemical engineering domain (Fig. 9.2): An evolution strategy
was applied to optimize the design of a nonsharp separation sequence (Preuß
& Bartz-Beielstein 2006). SPO was applied successfully to improve the per-
formance of the ES. This problem and the appropriate simulation techniques
were developed and analyzed at the Chair of Technical Thermodynamics of
the Rheinisch-Westfälischen Technischen Hochschule Aachen (RWTH Aachen
University of Technology, Germany). SPO has also been applied by Tosic
(2006) to optimize the runtime parameters of a genetic algorithm that pla-
narizes a given graph with the aim to minimize the number of crossings in its
drawing.

Including the relationship between step-size adaptation and threshold se-
lection into the analysis from the case study in Chap. 8 will provide interesting

184 9 Summary and Outlook

insights into the behavior of evolution strategies. In general, an analysis of the
self-adaptation mechanisms seems to be one of the most exciting tasks for fur-
ther research. Recall that a careful examination is required to perform this
task, because the evolution strategy presented in Chap. 6 required the specifi-
cation of nine design variables and various interactions have to be considered.

First attempts have been made to apply SPO to multicriteria optimiza-
tion problems (Bartz-Beielstein et al. 2003b; Mehnen et al. 2004a, 2005). A
discussion—similar to the one presented in Chap. 7—of performance mea-
sures for multicriteria optimization algorithms has to be done in advance.
The S-metric selection evolutionary algorithm (Emmerich et al. 2005) was
analyzed with SPO. Of particular interest are higher dimensional solution
spaces and fitness approximation techniques in evolutionary algorithms (Em-
merich & Naujoks 2004; Naujoks et al. 2005b, a). These issues are analyzed in
the collaborative research center “Design and Management of Complex Tech-
nical Processes and Systems by Means of Computational Intelligence Meth-
ods” (Beielstein et al. 2003c).

Visual tools that enable an intuitive understanding of experimental results
and their scientific meaning should be developed. The observed significance
level plots (Chap. 1) are merely a first step in this direction.

Based on considerations related to the concept of bounded rationality, one
can ask in which environment an algorithm performs well (Gigerenzer et al.
1999). Not merely organic evolution, but also social evolution might give valu-
able hints to develop new strategies or to understand existing behaviors. This
process can be beneficial in both directions: Evolutionary algorithms can be
used to model social behavior, and vice versa. Consider, for example, the
model of urban growth by cellular automata from Bäck et al. (1996), or a cur-
rent diploma thesis that models farm size and market power on agricultural
land markets with particle swarm optimization (de Vegt 2005).

We close the final chapter of this book with an analogy to depict the
relativity of good algorithms (or strategies) and to demonstrate the usefulness
of experience:

In a remote stream in Alaska, a rainbow trout spies a colorful
dimple on the undersurface of the water with an insect resting on top
of it. Darting over with the mouth agape, the fish bites down and turns
in search for its next victim. It does not get far, however, before the
“insect” strikes back. The trout is yanked from the quiet stream by the
whiplike pull of a fly fisherman’s rod. In a world without fisherman,
striking all the glitter is adaptive; it increases the chance for survival.
In a world with predators, however, this once-adaptive strategy can
turn a feeding fish into a fisherman’s food (Goldstein et al. 2002).

References

Ackermann, R. (1989). The new experimentalism. British Journal for the Philosophy
of Science, 40, 185–190.

Aggarwal, A. & Floudas, C. A. (1990). Synthesis of general distillation sequences—
nonsharp separations. Computers & Chemical Engineering, 14, 631–653.

Aho, A., Johnson, D., Karp, R., Kosaraju, S., et al. (1997). Merging opportunities
for theoretical computer science. SIGACT News, 28(3), 65–74.

Anderson, R. (1997). The role of experiment in the theory of algorithms. In Proceed-
ings of the 5th DIMACS Challenge Workshop, volume 59 of DIMACS: Series in
Discrete Mathematics and Theoretical Computer Science (pp. 191–196). Provi-
dence RI: American Mathematical Society.

Arnold, D. V. (2001). Evolution strategies in noisy environments—a survey of ex-
isting work. In L. Kallel, B. Naudts, & A. Rogers (Eds.), Theoretical Aspects of
Evolutionary Computing (pp. 239–249). Berlin, Heidelberg, New York: Springer.

Arnold, D. V. & Beyer, H.-G. (2003). A comparison of evolution strategies with other
direct search methods in the presence of noise. Computational Optimization and
Applications, 24(1), 135–159.

Aslett, R., Buck, R. J., Duvall, S. G., Sacks, J., & Welch, W. J. (1998). Circuit
optimization via sequential computer experiments: design of an output buffer.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(1), 31–
48.

Athen, H. & Bruhn, J., Eds. (1980). Lexikon der Schulmathematik. Studienausgabe.
Köln, Germany: Aulis.

Azadivar, F. (1999). Simulation optimization methodologies. In WSC ’99: Pro-
ceedings of the 31st Winter Simulation Conference (pp. 93–100). New York NY:
Association for Computing Machinery.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York NY:
Oxford University Press.

Bäck, T., Beielstein, T., Naujoks, B., & Heistermann, J. (1995). Evolutionary algo-
rithms for the optimization of simulation models using PVM. In J. Dongarra,
M. Gengler, B. Tourancheau, & X. Vigouroux (Eds.), Second European PVM
Users’ Group Meeting (EuroPVM’95) (pp. 277–282). Paris, France: Hermès.

Bäck, T., Dörnemann, H., Hammel, U., & Frankhauser, P. (1996). Modeling urban
growth by cellular automata. In H.-M. Voigt, W. Ebeling, I. Rechenberg, & H.-P.

186 References

Schwefel (Eds.), Proceedings Parallel Problem Solving from Nature—PPSN IV,
Berlin (pp. 636–645). Berlin, Heidelberg, New York: Springer.

Bandler, J., Cheng, Q., Dakroury, S., Mohamed, A., Bakr, M., Madsen, K., &
Søndergaard, J. (2004). Space mapping: the state of the art. IEEE Transactions
on Microwave Theory and Techniques, 52(1), 337–361.

Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2001). Discrete Event System
Simulation. Upper Saddle River NJ: Prentice Hall.

Barney, G. (1986). Elevator Traffic Analysis, Design and Control. Cambridge, U.K.:
Cambridge University Press.

Barr, R., Golden, B., Kelly, J., Rescende, M., & Stewart, W. (1995). Designing
and reporting on computational experiments with heuristic methods. Journal of
Heuristics, 1(1), 9–32.

Barr, R. & Hickman, B. (1993). Reporting computational experiments with parallel
algorithms: Issues, measures, and experts’ opinions. ORSA Journal on Comput-
ing, 5(1), 2–18.

Bartz-Beielstein, T. (2003). Experimental Analysis of Evolution Strategies—
Overview and Comprehensive Introduction. Interner Bericht des Sonder-
forschungsbereichs 531 Computational Intelligence CI–157/03, Universität Dort-
mund, Germany.

Bartz-Beielstein, T. (2005a). Evolution strategies and threshold selection. In M. J.
Blesa Aguilera, C. Blum, A. Roli, & M. Sampels (Eds.), Proceedings Second
International Workshop Hybrid Metaheuristics (HM’05), volume 3636 of Lec-
ture Notes in Computer Science (pp. 104–115). Berlin, Heidelberg, New York:
Springer.

Bartz-Beielstein, T. (2005b). New Experimentalism Applied to Evolutionary Com-
putation. PhD thesis, Universität Dortmund, Germany.

Bartz-Beielstein, T., Blum, D., & Branke, J. (2005a). Particle swarm optimization
and sequential sampling in noisy environments. In R. Hartl & K. Doerner (Eds.),
Proceedings 6th Metaheuristics International Conference (MIC2005) (pp. 89–
94). Vienna, Austria.

Bartz-Beielstein, T., de Vegt, M., Parsopoulos, K. E., & Vrahatis, M. N. (2004a).
Designing Particle Swarm Optimization with Regression Trees. Interner Bericht
des Sonderforschungsbereichs 531 Computational Intelligence CI–173/04, Uni-
versität Dortmund, Germany.

Bartz-Beielstein, T., Lasarczyk, C., & Preuß, M. (2005b). Sequential parameter
optimization. In B. McKay & others (Eds.), Proceedings 2005 Congress on Evo-
lutionary Computation (CEC’05), Edinburgh, Scotland, volume 1 (pp. 773–780).
Piscataway NJ: IEEE Press.

Bartz-Beielstein, T., Limbourg, P., Mehnen, J., Schmitt, K., Parsopoulos, K. E.,
& Vrahatis, M. N. (2003a). Particle swarm optimizers for pareto optimization
with enhanced archiving techniques. In R. Sarker & others (Eds.), Proceed-
ings 2003 Congress on Evolutionary Computation (CEC’03), Canberra, volume 3
(pp. 1780–1787). Piscataway NJ: IEEE.

Bartz-Beielstein, T., Limbourg, P., Mehnen, J., Schmitt, K., Parsopoulos, K. E., &
Vrahatis, M. N. (2003b). Particle Swarm Optimizers for Pareto Optimization
with Enhanced Archiving Techniques. Interner Bericht des Sonderforschungs-
bereichs 531 Computational Intelligence CI–153/03, Universität Dortmund, Ger-
many.

References 187

Bartz-Beielstein, T. & Markon, S. (2004). Tuning search algorithms for real-world
applications: A regression tree based approach. In G. W. Greenwood (Ed.),
Proceedings 2004 Congress on Evolutionary Computation (CEC’04), Portland
OR, volume 1 (pp. 1111–1118). Piscataway NJ: IEEE.

Bartz-Beielstein, T., Markon, S., & Preuß, M. (2003c). Algorithm based validation
of a simplified elevator group controller model. In T. Ibaraki (Ed.), Proceedings
5th Metaheuristics International Conference (MIC’03) (pp. 06/1–06/13 (CD–
ROM)). Kyoto, Japan.

Bartz-Beielstein, T. & Naujoks, B. (2004). Tuning Multicriteria Evolutionary Algo-
rithms for Airfoil Design Optimization. Interner Bericht des Sonderforschungs-
bereichs 531 Computational Intelligence CI–159/04, Universität Dortmund, Ger-
many.

Bartz-Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2004b). Analysis of
particle swarm optimization using computational statistics. In T.-E. Simos &
C. Tsitouras (Eds.), Proceedings International Conference Numerical Analysis
and Applied Mathematics (ICNAAM) (pp. 34–37). Weinheim, Germany: Wiley-
VCH.

Bartz-Beielstein, T. & Preuß, M. (2004). Experimental research in evolutionary
computation (tutorial). Congress on Evolutionary Computation (CEC 2004),
Portland OR. http://ls11-www.cs.uni-dortmund.de/people/tom. Cited 30
June 2004.

Bartz-Beielstein, T. & Preuß, M. (2005a). Experimental research in evo-
lutionary computation (tutorial). Genetic and Evolutionary Computation
Conf. (GECCO 2005), Washington DC. http://ls11-www.cs.uni-dortmund.

de/people/tom. Cited 30 June 2005.
Bartz-Beielstein, T. & Preuß, M. (2005b). Experimental research in evolutionary

computation (tutorial). Congress on Evolutionary Computation (CEC 2005),
Edinburgh UK. http://ls11-www.cs.uni-dortmund.de/people/tom. Cited 10
October 2004.

Bartz-Beielstein, T., Preuß, M., & Markon, S. (2005c). Validation and optimization
of an elevator simulation model with modern search heuristics. In T. Ibaraki, K.
Nonobe, & M. Yagiura (Eds.), Metaheuristics: Progress as Real Problem Solvers,
Operations Research/Computer Science Interfaces (pp. 109–128). Berlin, Heidel-
berg, New York: Springer.

Bartz-Beielstein, T., Preuß, M., & Reinholz, A. (2003d). Evolutionary algo-
rithms for optimization practitioners (tutorial). Proceedings 5th Metaheuris-
tics International Conference (MIC’03) Kyoto, Japan. http://ls11-www.cs.

uni-dortmund.de/people/tom. Cited 3 September 2003.
Bartz-Beielstein, T., Schmitt, K., Mehnen, J., Naujoks, B., & Zibold, D. (2004c).

KEA—A Software Package for Development, Analysis, and Application of Mul-
tiple Objective Evolutionary Algorithms. Interner Bericht des Sonderforschungs-
bereichs 531 Computational Intelligence CI–185/04, Universität Dortmund, Ger-
many.

Bechhofer, R. E., Dunnett, C. W., Goldsman, D. M., & Hartmann, M. (1990). A
comparison of the performances of procedures for selecting the normal pop-
ulation having the largest mean when populations have a common unknown
variance. Communications in Statistics, B19, 971–1006.

188 References

Bechhofer, R. E., Santner, T. J., & Goldsman, D. M. (1995). Design and Analysis
of Experiments for Statistical Selection, Screening, and Multiple Comparisons.
New York NY: Wiley.

Beielstein, T. (2003). Tuning Evolutionary Algorithms—Overview and Comprehen-
sive Introduction. Interner Bericht des Sonderforschungsbereichs 531 Computa-
tional Intelligence CI–148/03, Universität Dortmund, Germany.

Beielstein, T., Dienstuhl, J., Feist, C., & Pompl, M. (2001). Circuit Design Us-
ing Evolutionary Algorithms. Interner Bericht des Sonderforschungsbereichs 531
Computational Intelligence CI–122/01, Universität Dortmund, Germany.

Beielstein, T., Dienstuhl, J., Feist, C., & Pompl, M. (2002a). Circuit design us-
ing evolutionary algorithms. In D. B. Fogel & others (Eds.), Proceedings 2002
Congress on Evolutionary Computation (CEC’02) Within Third IEEE World
Congress on Computational Intelligence (WCCI’02), Honolulu HI (pp. 1904–
1909). Piscataway NJ: IEEE.

Beielstein, T., Ewald, C.-P., & Markon, S. (2003a). Optimal elevator group con-
trol by evolution strategies. In E. Cantú-Paz & others (Eds.), Proceedings Ge-
netic and Evolutionary Computation Conf. (GECCO 2003), Chicago IL, Part
II, volume 2724 of Lecture Notes in Computer Science (pp. 1963–1974). Berlin,
Heidelberg, New York: Springer.

Beielstein, T. & Markon, S. (2001). Threshold Selection, Hypothesis Tests, and DOE
Methods. Interner Bericht des Sonderforschungsbereichs 531 Computational In-
telligence CI–121/01, Universität Dortmund, Germany.

Beielstein, T. & Markon, S. (2002). Threshold selection, hypothesis tests, and DOE
methods. In D. B. Fogel & others (Eds.), Proceedings 2002 Congress on Evo-
lutionary Computation (CEC’02) Within Third IEEE World Congress on Com-
putational Intelligence (WCCI’02), Honolulu HI (pp. 777–782). Piscataway NJ:
IEEE.

Beielstein, T., Markon, S., & Preuß, M. (2003b). A parallel approach to eleva-
tor optimization based on soft computing. In T. Ibaraki (Ed.), Proceedings
5th Metaheuristics International Conference (MIC’03) (pp. 07/1–07/11 (CD–
ROM)). Kyoto, Japan.

Beielstein, T., Mehnen, J., Schönemann, L., Schwefel, H.-P., Surmann, T., Weinert,
K., & Wiesmann, D. (2003c). Design of evolutionary algorithms and applications
in surface reconstruction. In H.-P. Schwefel, I. Wegener, & K. Weinert (Eds.),
Advances in Computational Intelligence—Theory and Practice (pp. 145–193).
Berlin, Heidelberg, New York: Springer.

Beielstein, T., Parsopoulos, K. E., & Vrahatis, M. N. (2002b). Tuning PSO parame-
ters through sensitivity analysis. Interner Bericht des Sonderforschungsbereichs
531 Computational Intelligence CI–124/02, Universität Dortmund, Germany.

Belisle, C. J. P. (1992). Convergence theorems for a class of simulated annealing
algorithms. Journal Applied Probability, 29, 885–895.

Bentley, P. (2002). ISGEC workshop on standards at GECCO 2002. http:/www.

cs.ucl.ac.uk/staff/P.Bentley/standards.html. Cited 6 April 2004.
Beyer, H.-G. (2000). Evolutionary algorithms in noisy environments: Theoretical

issues and guidelines for practice. CMAME (Computer Methods in Applied Me-
chanics and Engineering), 186, 239–267.

Beyer, H.-G. (2001). The Theory of Evolution Strategies. Berlin, Heidelberg, New
York: Springer.

References 189

Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies—A comprehensive in-
troduction. Natural Computing, 1, 3–52.

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm
for configuring metaheuristics. In W. Langdon (Ed.), GECCO 2002: Proceed-
ings of the Genetic and Evolutionary Computation Conference (pp. 11–18). San
Francisco CA: Morgan Kaufmann.

Box, G. E. P. (1957). Evolutionary operation: A method for increasing industrial
productivity. Applied Statistics, 6, 81–101.

Box, G. E. P. & Draper, N. R. (1987). Empirical Model Building and Response
Surfaces. New York NY: Wiley.

Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for Experimenters.
New York NY: Wiley.

Branke, J., Chick, S., & Schmidt, C. (2005). New developments in ranking and
selection: An empirical comparison of the three main approaches. In M. E. Kuhl
& others (Eds.), Proceedings of the 2005 Winter Simulation Conference (pp.
708–717). Piscataway NJ: IEEE.

Branke, J., Schmidt, C., & Schmeck, H. (2001). Efficient fitness estimation in noisy
environments. In L. Spector (Ed.), Genetic and Evolutionary Computation Con-
ference (GECCO’01) (pp. 243–250). San Francisco CA: Morgan Kaufmann.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification
and Regression Trees. Monterey CA: Wadsworth.

Briest, P., Brockhoff, D., Degener, B., et al. (2004). Experimental supplements to
the theoretical analysis of EAs on problems from combinatorial optimization. In
X. Yao, E. Burke, J. A. Lozano, & others (Eds.), Parallel Problem Solving from
Nature—PPSN VIII, volume 3242 of Lecture Notes in Computer Science (pp.
21–30). Berlin, Heidelberg, New York: Springer.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization
algorithms. Journal of the Institute of Mathematics and Its Applications, 6,
76–90.

Bussieck, M., Drud, A., Meeraus, A., & Pruessner, A. (2003). Quality assurance
and global optimization. In Global Optimization and Constraint Satisfaction:
First International Workshop on Global Constraint Optimization and Constraint
Satisfaction, COCOS 2002, volume 2861 of Lecture Notes in Computer Science
(pp. 223–238). Berlin, Heidelberg, New York: Springer.

Cartwright, N. (1983). How the Laws of Physics Lie. Oxford, U.K.: Oxford Univer-
sity Press.

Cartwright, N. (2000). The Dappled World: A Study of the Boundaries of Science.
Cambridge, U.K.: Cambridge University Press.

Chalmers, A. F. (1999). What Is This Thing Called Science. St. Lucia, Australia:
University of Queensland Press.

Chambers, J., Cleveland, W., Kleiner, B., & Tukey, P. (1983). Graphical Methods
for Data Analysis. Belmont CA: Wadsworth.

Chambers, J. M. & Hastie, T. H., Eds. (1992). Statistical Models in S. Pacific Grove
CA: Wadsworth & Brooks/Cole.

Chen, H. C., Chen, C. H., Dai, L., & Yücesan, E. (1997). New development of
optimal computing budget allocation for discrete event simulation. In S. An-
dradóttir, K. J. Healy, D. H. Withers, & B. L. Nelson (Eds.), Proceedings of
the 1997 Winter Simulation Conference (pp. 334–341). Piscataway NJ: IEEE
Computer Society.

190 References

Chen, J., Chen, C., & Kelton, D. (2003). Optimal computing budget allocation of
indifference-zone-selection procedures. Working paper, taken from http://www.

cba.uc.edu/faculty/keltonwd. Cited 6 January 2005.
Chiarandini, M., Birattari, M., Socha, K., & Rossi-Doria, O. (2003). An effective hy-

brid approach for the university course timetabling problem. Accepted for pub-
lication in the Journal of Scheduling. http://www.imada.sdu.dk/\∼\/marco.
Cited 6 October 2005.

Chiarandini, M. & Stützle, T. (2002). Experimental Evaluation of Course
Timetabling Algorithms. Technical Report AIDA-02-05, FG Intellektik, TU
Darmstadt, Darmstadt, Germany.

Clerc, M. & Kennedy, J. (2002). The particle swarm-explosion, stability, and conver-
gence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 6(1), 58–73.

Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45, 1304–
1312.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence. Cambridge MA:
MIT Press.

Cohen, P. R., Gent, I. P., & Walsh, T. (2000). Empirical methods for AI, tutorial
given at AAAI, ECAI and Tableaux conferences in 2000. http://www-users.

cs.york.ac.uk/\∼\/tw/empirical.html. Cited 3 January 2004.
Coleman, D. E. & Montgomery, D. C. (1993). A systematic approach to planning

for a designed industrial experiment. Technometrics, 35, 1–27.
Collett, D. (1991). Modelling Binary Data. London: Chapman and Hall.
Cox, D. R. & Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and

Hall.
Crites, R. & Barto, A. (1998). Elevator group control using multiple reinforcement

learning agents. Machine Learning, 33(2-3), 235–262.
Croarkin, C. & Tobias, P., Eds. (2004). NIST/SEMATECH e-Handbook of Statistical

Methods. National Institute of Standards and Technology. http://www.itl.

nist.gov/div898/handbook. Cited 15 April 2004.
de Groot, A. (1946/1978). Thought and Choice in Chess. New York NY: Mouton.
de Vegt, M. (2005). Einfluss verschiedener Parametrisierungen auf die Dynamik

des Partikel-Schwarm-Verfahrens: Eine empirische Analyse. Interner Bericht
der Systems Analysis Research Group SYS–3/05, Universität Dortmund, Fach-
bereich Informatik, Germany.

Demetrescu, C. & Italiano, G. F. (2000). What do we learn from experimental
algorithmics? In MFCS ’00: Proceedings of the 25th International Symposium on
Mathematical Foundations of Computer Science (pp. 36–51). Berlin, Heidelberg,
New York: Springer.

Dolan, E. D. & More, J. J. (2002). Benchmarking optimization software with per-
formance profiles. Mathematical Programming, 91, 201–213.

Draper, N. R. & Smith, H. (1998). Applied Regression Analysis. New York NY:
Wiley, 3rd edition.

Driml, M. & Hanš, O. (1967). On a randomized optimization procedure. In J.
Kožešnik (Ed.), Transactions of the 4th Prague Conference on Information The-
ory, Statistical Decision Functions and Random Processes (pp. 273–276). Prague,
Czech Republic: Czechoslovak Academy of Sciences.

Droste, S., Jansen, T., & Wegener, I. (2000). Optimization with Randomized Search
Heuristics: The (A)NFL Theorem, Realistic Scenarios, and Difficult Functions.

References 191

Interner Bericht des Sonderforschungsbereichs 531 Computational Intelligence
CI–91/00, Universität Dortmund, Germany.

Dueck, G. & Scheuer, T. (1990). Threshold accepting: a general purpose optimiza-
tion algorithm appearing superior to simulated annealing. Journal of Computa-
tional Physics, 90, 161–175.

Eberhart, R. & Shi, Y. (1998). Comparison between genetic algorithms and particle
swarm optimization. In V. Porto, N. Saravanan, D. Waagen, & A. Eiben (Eds.),
Evolutionary Programming, volume VII (pp. 611–616). Berlin, Heidelberg, New
York: Springer.

Efron, B. & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. London:
Chapman and Hall.

Eiben, A., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evo-
lutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2),
124–141.

Eiben, A. & Jelasity, M. (2002). A critical note on experimental research method-
ology in EC. In Proceedings of the 2002 Congress on Evolutionary Computation
(CEC’2002) (pp. 582–587). Piscataway NJ: IEEE.

Eiben, A. E. & Smith, J. E. (2003). Introduction to Evolutionary Computing. Berlin,
Heidelberg, New York: Springer.

Emmerich, M., Beume, N., & Naujoks, B. (2005). An EMO algorithm using the hy-
pervolume measure as selection criterion. In C. A. C. Coello, A. H. Aguirre, & E.
Zitzler (Eds.), Proceeding Evolutionary Multi-Criterion Optimization: Third In-
ternational Conference (EMO 2005), volume 3410 of Lecture Notes in Computer
Science (pp. 62–76). Berlin, Heidelberg, New York: Springer.

Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., & Giannakoglou, K. (2002).
Metamodel-assisted evolution strategies. In J. J. M. Guervós, P. Adamidis, H.-
G. Beyer, J. L. Fernández-Villacañas, & H.-P. Schwefel (Eds.), Parallel Problem
Solving from Nature—PPSN VII, Proceedings Seventh International Conference,
Granada (pp. 361–370). Berlin, Heidelberg, New York: Springer.

Emmerich, M. & Naujoks, B. (2004). Metamodel-assisted multiobjective optimisa-
tion strategies and their application in airfoil design. In I. C. Parmee (Ed.),
Adaptive Computing in Design and Manufacture VI (pp. 249–260). Berlin, Hei-
delberg, New York: Springer.

Encyclopaedia Britannica Online (2001). “Faraday effect”. http://members.eb.

com/bol/topic?eu=34314\&sctn=1. Cited 28 October 2001.
Fabian, V. (1962). On multiple decision methods for ranking population means.

Annals of Mathmatical Statistics, 33, 248–254.
Federov, V. (1972). Theory of Optimal Experiments. New York NY: Academic.
Feldt, R. & Nordin, P. (2000). Using factorial experiments to evaluate the effect of

genetic programming parameters. In R. Poli & others (Eds.), Genetic Program-
ming, Proceedings of EuroGP’2000, volume 1802 of Lecture Notes in Computer
Science (pp. 271–282). Berlin, Heidelberg, New York: Springer.

Felscher, W. (1998). Two dicta. Historia Matematica Mailing List Archive. http:

//archives.math.utk.edu//hypermail/historia/aug98. Cited 10 May 2004.
Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver and Boyd.
Fletcher, R. (1970). A new approach to variable metric algorithms. Computer

Journal, 13, 317–322.
Folks, J. L. (1981). Ideas of Statistics. New York NY: Wiley.

192 References

Forster, M. & Sober, E. (1994). How to tell when simpler, more unified, or less
ad hoc theories will provide more accurate predictions. British Journal for the
Philosophy of Science, 45, 1–35.

François, O. & Lavergne, C. (2001). Design of evolutionary algorithms—a statistical
perspective. IEEE Transactions on Evolutionary Computation, 5(2), 129–148.

Franco, J. & Paull, M. (1983). Probabilistic analysis of the Davis Putnam procedure
for solving the satisfiability problem. Discrete Applied Mathematics, 5(1), 77–87.

Franklin, A., Ed. (1990). Experiment, Right or Wrong. Cambridge, U.K.: Cambridge
University Press.

Franklin, A. (2003). Experiment in physics. In E. N. Zalta (Ed.), The Stan-
ford Encyclopedia of Philosophy. Stanford CA: Stanford University. http://

plato.stanford.edu/archives/sum2003/entries/physics-experiment. Cited
14 April 2004.

Galison, P. (1987). How Experiments End. Chicago IL: The University of Chicago
Press.

Gentle, J. E., Härdle, W., & Mori, Y. (2004a). Computational statistics: An intro-
duction. In J. E. Gentle, W. Härdle, & Y. Mori (Eds.), Computational Statistics
(pp. 3–16). Berlin, Heidelberg, New York: Springer.

Gentle, J. E., Härdle, W., & Mori, Y., Eds. (2004b). Handbook of Computational
Statistics. Berlin, Heidelberg, New York: Springer.

Giere, R. N. (1999). Using models to represent reality. In L. Magnani (Ed.),
Model Based Reasoning in Scientific Discovery. Proceedings of the International
Conference on Model-Based Reasoning in Scientific Discovery (pp. 41–57). New
York NY: Kluwer.

Gigerenzer, G. (2003). Where do new ideas come from? A heuristic of discovery in
cognitive sciences. In M. C. Galavotti (Ed.), Observation and Experiment in the
Natural and Social Sciences (pp. 99–139). Dordrecht, The Netherlands: Kluwer.

Gigerenzer, G. & Selten, R., Eds. (2002). Bounded Rationality: The Adaptive Tool-
box. Cambridge MA: MIT Press.

Gigerenzer, G., Todd, P. M., & the ABC research group (1999). Simple Heuristics
That Make Us Smart. New York NY: Oxford University Press.

Giunta, A., Wojtkiewicz Jr., S., & Eldred, M. (2003). Overview of modern design of
experiments methods for computational simulations. In Proceedings of the 41st
AIAA Aerospace Sciences Meeting and Exhibit Reno NV: American Institute of
Aeronautics and Astronautics. Paper AIAA-2003-0649.

Goldberg, A. (1979). On the Complexity of the Satisfiability Problem. Technical
Report 16, Courant Computer Science Report, New York University, NY.

Goldberg, A., Purdom, P. W., & Brown, C. A. (1982). Average time analyses of
simplified Davis-Putnam procedures. Information Processing Letters, 15(2), 72–
75.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading MA: Addison-Wesley.

Goldfarb, D. (1970). A family of variable metric updates derived by variational
means. Mathematics of Computing, 24, 23–26.

Goldsman, D. & Nelson, B. L. (1998). Statistical screening, selection, and multi-
ple comparison procedures in computer simulation. In D. Medeiros, E. Watson,
J. Carson, & M. Manivannan (Eds.), WSC ’98: Proceedings of the 30th Win-
ter Simulation Conference (pp. 159–166). Los Alamitos CA: IEEE Computer
Society.

References 193

Goldstein, D., Gigerenzer, G., Hogart, R., Kacelnik, A., Kareev, Y., Klein, G., Mar-
tignon, L., Payne, J., & Schlag, K. (2002). Group report: Why and when do
simple heuristics work? In G. Gigerenzer & R. Selten (Eds.), Bounded Rational-
ity: The Adaptive Toolbox (pp. 174–190). Cambridge MA: MIT Press.

Gooding, D., Pinch, T., & Schaffer, S. (1989). The Uses of Experiment: Studies in
the Natural Sciences. Cambridge, U.K.: Cambridge University Press.

Gregoire, T. (2001). Biometry in the 21st century: Whither statistical inference?
(invited keynote). Proceedings of the Forest Biometry and Information Science
Conference held at the University of Greenwich, June 2001. http://cms1.gre.
ac.uk/conferences/iufro/proceedings/gregoire.pdf. Cited 19 May 2004.

Gregory, D. E., Gao, L., Rosenberg, A. L., & Cohen, P. R. (1996). An empirical
study of dynamic scheduling on rings of processors. In Proceedings of the 8th
IEEE Symposium on Parallel and Distributed Processing, SPDP’96 (New Or-
leans, Louisiana, October 23-26, 1996) (pp. 470–473). Los Alamitos CA: IEEE
Computer Society.

Guala, F. (2003). Experimental localism and external validity. Philosophy of Science,
70, 1195–1205.

Gupta, S. S. (1965). On some multiple decision (selection and ranking) rules. Tech-
nometrics, 7, 225–245.

Hacking, I. (1983). Representing and Intervening. Cambridge, U.K.: Cambridge
University Press.

Hacking, I. (1996). Einführung in die Philosophie der Naturwissenschaften.
Stuttgart, Germany: Reclam.

Hacking, I. (2001). An Introduction to Probability and Inductive Logic. Cambridge,
U.K.: Cambridge University Press.

Hartmann, M. (1988). An improvement on Paulsson’s sequential ranking procedure.
Sequential Analysis, 7, 363–372.

Hartmann, M. (1991). An improvement on Paulsson’s procedure for selecting the
population with the largest mean from k normal populations with a common
unknown variance. Sequential Analysis, 10, 1–16.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learn-
ing. Berlin, Heidelberg, New York: Springer.

Hawking, S. W. (1980). Is the End in Sight for Theoretical Physics?: An Inaugural
Lecture. Cambridge, U.K.: Cambridge University Press.

Hillstrom, K. E. (1977). A simulation test approach to the evaluation of nonlinear
optimization algorithms. ACM Transactions on Mathematical Software, 3(4),
305–315.

Hooker, J. (1994). Needed: An empirical science of algorithms. Operations Research,
42(2), 201–212.

Hooker, J. (1996). Testing heuristics: We have it all wrong. Journal of Heuristics,
1(1), 33–42.

Hoos, H. H. (1998). Stochastic Local Search—Methods, Models, Applications. PhD
thesis, Technische Universität Darmstadt, Germany.

Hoos, H. H. & Stützle, T. (2005). Stochastic Local Search—Foundations and Appli-
cations. Amsterdam, The Netherlands: Elsevier.

Isaaks, E. H. & Srivastava, R. M. (1989). An Introduction to Applied Geostatistics.
Oxford, U.K.: Oxford University Press.

Jansen, T. & Wegener, I. (2000). Evolutionary Algorithms: How to Cope With
Plateaus of Constant Fitness and When to Reject Strings of the Same Fit-

194 References

ness. Technical Report CI–96/00, Universität Dortmund, Fachbereich Infor-
matik, Germany.

Jarvie, I. C. (1998). Popper, Karl Raimund. In E. Craig (Ed.), Routledge Ency-
clopedia of Philosophy. London: Routledge. http://www.rep.routledge.com/

article/DD052SECT2. Cited 19 November 2003.
Jin, R., Chen, W., & Sudjitanto, A. (2002). On sequential sampling for global meta-

modeling in engineering design. In Proceedings of the DET02: ASME 2002 De-
sign Engineering Technical Conferences and Computers and Information in En-
gineering Conference (pp. 1–10). Montreal, Canada: ASME. DETC2002/DAC-
34092.

Jin, Y. (2003). A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing, 9(1), 3–12.

Jin, Y. & Branke, J. (2005). Evolutionary optimization in uncertain environments—
a survey. IEEE Transactions on Evolutionary Computation, 9(3), 303–317.

Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of algo-
rithms. In M. H. Goldwasser, D. S. Johnson, & C. C. McGeoch (Eds.), Data
Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS
Implementation Challenges (pp. 215–250). Providence RI: American Mathemat-
ical Society.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1989). Optimization
by simulated annealing: an experimental evaluation. Part I, graph partitioning.
Operations Research, 37(6), 865–892.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1991). Optimization
by simulated annealing: an experimental evaluation. Part II, graph coloring and
number partitioning. Operations Research, 39(3), 378–406.

Jones, D., Schonlau, M., & Welch, W. (1998). Efficient global optimization of ex-
pensive black-box functions. Journal of Global Optimization, 13, 455–492.

Kan, A. H. G. R. (1976). Machine Scheduling Problems: Classification, Complexity
and Computation. The Hague, The Netherlands: Nijhoff.

Kelton, W. (2000). Experimental design for simulation. In J. Joines, R. Barton, K.
Kang, & P. Fishwick (Eds.), Proceedings of the 2000 Winter Simulation Confer-
ence (pp. 32–38). Piscataway NJ: IEEE.

Kempthorne, O. & Folks, L. (1971). Probability, Statistics, and Data Analysis. Ames
IA: Iowa State University Press.

Kennedy, J. (2003). Bare bones particle swarms. In Proceedings 2003 IEEE Swarm
Intelligence Symposium (pp. 80–87). Piscataway NJ: IEEE.

Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In Proceedings
IEEE International Conference on Neural Networks, volume IV (pp. 1942–1948).
Piscataway NJ: IEEE.

Kennedy, J. & Eberhart, R. (2001). Swarm Intelligence. San Francisco CA: Morgan
Kaufmann.

Kieseppä, I. A. (1997). Akaike information criterion, curve-fitting and the philo-
sophical problem of simplicity. British Journal for the Philosophy of Science,
48, 21–48.

Kim, S.-H. & Nelson, B. L. (2001). A fully sequential procedure for indifference-
zone selection in simulation. ACM Transactions on Modeling and Computer
Simulation, 11(3), 251–273.

Kleijnen, J. P. C. (1987). Statistical Tools for Simulation Practitioners. New
York NY: Marcel Dekker.

References 195

Kleijnen, J. P. C. (1997). Experimental design for sensitivity analysis, optimization,
and validation of simulation models. In J. Banks (Ed.), Handbook of Simulation.
New York NY: Wiley.

Kleijnen, J. P. C. (2001). Experimental Design for Sensitivity Analysis of Simulation
Models. Discussion Paper 15, Center for Economic Research, Tilburg University,
The Netherlands.

Kleijnen, J. P. C. & Van Groenendaal, W. (1992). Simulation—A Statistical Per-
spective. Chichester, U.K.: Wiley.

Klein, G. (2002). The fiction of optimization. In G. Gigerenzer & R. Selten (Eds.),
Bounded Rationality: The Adaptive Toolbox (pp. 103–121). Cambridge MA: MIT
Press.

Knuth, D. (1981). The Art of Computer Programming. Reading MA: Addison-
Wesley, 2nd edition.

Kursawe, F. (1999). Grundlegende empirische Untersuchungen der Parameter von
Evolutionsstrategien – Metastrategien. Dissertation, Fachbereich Informatik,
Universität Dortmund, Germany.

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence
properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal
on Optimization, 9(1), 112–147.

Lasarczyk, C. W. G. & Banzhaf, W. (2005a). An algorithmic chemistry for genetic
programming. In M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, &
M. Tomassini (Eds.), Proceedings of the 8th European Conference on Genetic
Programming, volume 3447 of Lecture Notes in Computer Science (pp. 1–12).
Berlin, Heidelberg, New York: Springer.

Lasarczyk, C. W. G. & Banzhaf, W. (2005b). Total synthesis of algorithmic
chemistries. In H.-G. Beyer & others (Eds.), Proceedings Genetic and Evolu-
tionary Computation Conference (GECCO 2005), Washington D.C., volume 2
(pp. 1635–1640). New York NY: Association for Computing Machinery.

Law, A. & Kelton, W. (2000). Simulation Modeling and Analysis. New York NY:
McGraw-Hill, 3rd edition.

Lewis, R., Torczon, V., & Trosset, M. (2000). Direct search methods: Then and
now. Journal of Computational and Applied Mathematics, 124(1–2), 191–207.

Lophaven, S., Nielsen, H., & Søndergaard, J. (2002a). Aspects of the Matlab Toolbox
DACE. Technical Report IMM-REP-2002-13, Informatics and Mathematical
Modelling, Technical University of Denmark, Copenhagen, Denmark.

Lophaven, S., Nielsen, H., & Søndergaard, J. (2002b). DACE—A Matlab Kriging
Toolbox. Technical Report IMM-REP-2002-12, Informatics and Mathematical
Modelling, Technical University of Denmark, Copenhagen, Denmark.

Mammen, E. & Nandi, S. (2004). Bootstrap and resampling. In J. E. Gentle, W.
Härdle, & Y. Mori (Eds.), Handbook of Computational Statistics (pp. 467–495).
Berlin, Heidelberg, New York: Springer.

Markon, S. (1995). Studies on Applications of Neural Networks in the Elevator
System. PhD thesis, Kyoto University, Japan.

Markon, S., Arnold, D. V., Bäck, T., Beielstein, T., & Beyer, H.-G. (2001).
Thresholding—A selection operator for noisy ES. In J.-H. Kim, B.-T. Zhang,
G. Fogel, & I. Kuscu (Eds.), Proceedings 2001 Congress on Evolutionary Com-
putation (CEC’01), Seoul (pp. 465–472). Piscataway NJ: IEEE.

196 References

Markon, S., Kita, H., Kise, H., & Bartz-Beielstein, T., Eds. (2006). Modern Supervi-
sory and Optimal Control with Applications in the Control of Passenger Traffic
Systems in Buildings. Berlin, Heidelberg, New York: Springer.

Martinez, W. L. & Martinez, A. R. (2002). Computational Statistics Handbook with
MATLAB. Boca Raton FL: Chapman & Hall/CRC.

Matyáš, J. (1965). Random Optimization. Automation and Remote Control, 26(2),
244–251.

Mayo, D. G. (1983). An objective theory of statistical testing. Synthese, 57, 297–340.
Mayo, D. G. (1996). Error and the Growth of Experimental Knowledge. Chicago IL:

The University of Chicago Press.
Mayo, D. G. (1997). Severe tests, arguing from error, and methodological underde-

termination. Philosophical Studies, 86, 243–266.
McCullagh, P. & Nelder, J. (1989). Generalized Linear Models. London, U.K.:

Chapman and Hall, 2nd edition.
McGeoch, C. C. (1986). Experimental Analysis of Algorithms. PhD thesis, Carnegie

Mellon University, Pittsburgh PA.
McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three

methods for selecting values of input variables in the analysis of output from a
computer code. Technometrics, 21(2), 239–245.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., & Henkenjohann, N. (2004a). Sys-
tematic analyses of multi-objective evolutionary algorithms applied to real-world
problems using statistical design of experiments. In R. Teti (Ed.), Proceedings
Fourth International Seminar Intelligent Computation in Manufacturing Engi-
neering (CIRP ICME’04), volume 4 (pp. 171–178). Naples, Italy.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., & Lasarczyk, C. W. G. (2005).
Multiobjective evolutionary design of mold temperature control using DACE
for parameter optimization. In H. Pfützner & E. Leiss (Eds.), Proceedings
Twelfth International Symposium Interdisciplinary Electromagnetics, Mechan-
ics, and Biomedical Problems (ISEM 2005), volume L11-1 (pp. 464–465). Vi-
enna, Austria: Vienna Magnetics Group Reports.

Mehnen, J., Michelitsch, T., Bartz-Beielstein, T., & Schmitt, K. (2004b). Evo-
lutionary optimization of mould temperature control strategies: Encoding and
solving the multiobjective problem with standard evolution strategy and kit for
evolutionary algorithms. Journal of Engineering Manufacture (JEM), 218(B6),
657–665.

Merriam-Webster Online Dictionary (2004). “Theory”. http://www.

merriam-webster.com. Cited 2 April 2004.
Mertens, H. (1990). Moderne – Sprache – Mathematik: eine Geschichte des Streits

um die Grundlagen der Disziplin und des Subjekts formaler Systeme. Frankfurt
am Main, Germany: Suhrkamp.

Metropolis, N. & Ulam, S. (1949). The Monte Carlo Method. Journal of the Amer-
ican Statistical Association, 44(247), 335–341.

Minsky, M. (1985). The Society of Mind. New York NY: Simon and Schuster.
Mitchell, D. G., Selman, B., & Levesque, H. J. (1992). Hard and easy distributions

for SAT problems. In P. Rosenbloom & P. Szolovits (Eds.), Proceedings of the
Tenth National Conference on Artificial Intelligence (pp. 459–465). Menlo Park
CA: AAAI.

Montgomery, D. C. (2001). Design and Analysis of Experiments. New York NY:
Wiley, 5th edition.

References 197

More, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained opti-
mization software. ACM Transactions on Mathematical Software, 7(1), 17–41.

Moret, B. M. E. (2002). Towards a discipline of experimental algorithmics. In M.
Goldwasser, D. Johnson, & C. McGeoch (Eds.), Data Structures, Near Neigh-
bor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Chal-
lenges, DIMACS Monographs 59 (pp. 197–213). Providence RI: American Math-
ematical Society.

Morgan, J. & Sonquist, J. (1963). Problems in the analysis of survey data and a
proposal. Journal of the American Statistical Association, 58, 415–434.

Morrison, D. E. & Henkel, R. E., Eds. (1970). The Significance Test Controversy—A
Reader. London, U.K.: Butterworths.

Mott, N. F. & Sneddon, I. N. (1948). Wave Mechanics and Its Application. London,
U.K.: Oxford University Press.

Myers, R. & Hancock, E. (2001). Empirical modelling of genetic algorithms. Evolu-
tionary Computation, 9(4), 461–493.

Nagylaki, T. (1992). Introduction to Theoretical Population Genetics. Berlin, Hei-
delberg, New York: Springer.

Naudts, B. & Kallel, L. (2000). A comparison of predictive measures of problem
difficulty in evolutionary algorithms. IEEE Transactions on Evolutionary Com-
putation, 4(1), 1–15.

Naujoks, B., Beume, N., & Emmerich, M. (2005a). Metamodel-assisted SMS-EMOA
applied to airfoil optimization tasks. In R. Schilling, W. Haase, J. Périaux, &
H. Baier (Eds.), Proceedings EUROGEN’05 (CD-ROM). München, Germany:
Technische Universität.

Naujoks, B., Beume, N., & Emmerich, M. (2005b). Multi-objective optimisation
using S-metric selection: Application to three dimensional solution spaces. In B.
McKay & others (Eds.), Proceedings 2005 Congress on Evolutionary Computa-
tion, volume 2 (pp. 1282–1289). Piscataway NJ: IEEE.

Nelder, J. & Mead, R. (1965). A simplex method for function minimization. Com-
puter Journal, 7, 308–313.

Nelson, B., Swann, J., Goldsman, D., & Song, W. (1998). Simple Procedures for
Selecting the Best Simulated System When the Number of Alternatives Is Large.
Technical report, Dept. of Industrial Engineering and Management Science,
Northwestern University, Evanston, Illinois.

Neumaier, A., Shcherbina, O., Huyer, W., & Vinko, T. (2005). A comparison of
complete global optimization solvers. Mathematical Programming B, 103, 335–
356.

Newman, J. R., Ed. (1956). The World of Mathematics. New York NY: Simon and
Schuster.

Neyman, J. (1950). First Course in Probability and Statistics. New York NY: Henry
Holt.

Niedermeier, R. (2003). Parametrisierte Algorithmen. Lecture Notes, Universität
Tübingen, Germany. http://www-fs.informatik.uni-tuebingen.de/lehre/

ws02-03/paramalg.htm. Cited 20 December 2004.
Nocedal, J. & Wright, S. (1999). Numerical Optimization. Berlin, Heidelberg, New

York: Springer.
Parkes, A. J. & Walser, J. P. (1996). Tuning local search for satisfiability testing.

In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI’96) (pp. 356–362).

198 References

Parsopoulos, K. & Vrahatis, M. (2002). Recent approaches to global optimization
problems through particle swarm optimization. Natural Computing, 1(2–3), 235–
306.

Parsopoulos, K. E. & Vrahatis, M. N. (2004). On the computation of all global
minimizers through particle swarm optimization. IEEE Transactions on Evolu-
tionary Computation, 8(3), 211–224.

Paulson, E. (1964). A sequential procedure for selecting the population with the
largest mean from k normal populations. Annals of Mathematical Statistics, 35,
174–180.

Pichitlamken, J. & Nelson, B. L. (2001). Comparing systems via stochastic simu-
lation: Selection-of-the-best procedures for optimization via simulation. In Pro-
ceedings of the 33rd Winter Simulation Conference (pp. 401–407). Washington
DC: IEEE Computer Society.

Pichitlamken, J., Nelson, B. L., & Hong, L. J. (2003). A sequential procedure
for neighborhood selection-of-the-best in optimization via simulation. Working
Paper. http://www.ielm.ust.hk/dfaculty/hongl/. Cited 18 June 2004.

Popper, K. (1959). The Logic of Scientific Discovery. London, U.K.: Hutchinson.
Popper, K. (1979). Objective Knowledge: An Evolutionary Approach. Oxford, U.K.:

Oxford University Press.
Popper, K. (1983). Realisim and the Aim of Science. Totowa NJ: Rowman and

Littlefield.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Nu-

merical Recipes in Fortran 77. Cambridge, U.K.: Cambridge University Press.
Preuß, M. & Bartz-Beielstein, T. (2006). Self-adaptation in evolution strategies—

an experimental analysis based on sequential parameter optimization. In F.
Lobo, C. Lima, & Z. Michalewicz (Eds.), Parameter Setting in Evolutionary Al-
gorithms, Studies in Computational Intelligence. Berlin, Heidelberg, New York:
Springer.

Pukelsheim, F. (1993). Optimal Design of Experiments. New York NY: Wiley.
Rardin, R. & Uzsoy, R. (2001). Experimental evaluation of heuristic optimization

algorithms: A tutorial. Journal of Heuristics, 7(3), 261–304.
Rechenberg, I. (1973). Evolutionsstrategie. Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Stuttgart, Germany: frommann–
holzboog.

Reeves, C. & Yamada, T. (1998). Genetic algorithms, path relinking and the flow-
shop sequencing problem. Evolutionary Computation Journal, 6(1), 230–234.

Rosenbrock, H. (1960). An automatic method for finding the greatest or least value
of a function. Computer Journal, 3, 175–184.

Roth, A. J. (1978). A new procedure for selecting a subset containing the best
normal population. Journal American Statistical Association, 73, 613–617.

Rubin, H. (1971). Occam’s razor needs new blades. In V. Godambe & D. Sprott
(Eds.), Foundations of Statistical Inference (pp. 372–374). Toronto, Canada:
Holt, Rinehart and Winston.

Rubinstein, A. (1998). Modeling Bounded Rationality. Cambridge MA: MIT Press.
Rudolph, G. (1997a). Convergence Properties of Evolutionary Algorithms. Hamburg,

Germany: Kovač.
Rudolph, G. (1997b). Reflections on bandit problems and selection methods in un-

certain environments. In T. Bäck (Ed.), Genetic Algorithms: Proceedings Seventh

References 199

International Conference (ICGA’97) (pp. 166–173). San Francisco CA: Morgan
Kaufmann.

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis
of computer experiments. Statistical Science, 4(4), 409–435.

Sanders, P. (2004). Announcement of the Algorithm Engineering for Fundamental
Data Structures and Algorithms talk during the Summer School on Experimen-
tal Algorithmics. http://www.diku.dk/forskning/performance-engineering/
Sommerskole/scientific-program.html. Cited 17 May 2004.

Sano, Y. & Kita, H. (2000). Optimization of noisy fitness functions by means of
genetic algorithms using history of search. In M. Schoenauer & others (Eds.),
Parallel Problem Solving from Nature (PPSN VI), volume 1917 of Lecture Notes
in Computer Science (pp. 571–580). Berlin, Heidelberg, New York: Springer.

Santner, T. J. (1976). A two-stage procedure for selection of δ∗-optimal means in the
normal case. Communications in Statistics—Theory and Methods, A5, 283–292.

Santner, T. J., Williams, B. J., & Notz, W. I. (2003). The Design and Analysis of
Computer Experiments. Berlin, Heidelberg, New York: Springer.

Satterthwaite, F. E. (1959a). Random balance experimentation. Technometrics, 1,
111–137.

Satterthwaite, F. E. (1959b). REVOP or Random Evolutionary Operation. Technical
Report Report 10-10-59, Merrimack College, North Andover MA.

Schaffer, J. D., Caruana, R. A., Eshelman, L., & Das, R. (1989). A study of con-
trol parameters affecting online performance of genetic algorithms for function
optimization. In J. D. Schaffer (Ed.), Proceedings of the Third International
Conference on Genetic Algorithms (pp. 51–60). San Mateo CA: Morgan Kauf-
man.

Schmidt, J. W. (1986). Introduction to systems analysis, modeling and simulation.
In J. Wilson, J. Henriksen, & S. Roberts (Eds.), WSC ’86: Proceedings of the
18th Winter Simulation Conference (pp. 5–16). New York NY: Association for
Computing Machinery.

Schneier, B. (1996). Applied Cryptography: Protocols, Algorithms, and Source Code
in C. New York NY: Wiley.

Schonlau, M. (1997). Computer Experiments and Global Optimization. PhD thesis,
University of Waterloo, Ontario, Canada.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung. Dr.-
Ing. Dissertation, Technische Universität Berlin, Fachbereich Verfahrenstechnik,
Berlin, Germany.

Schwefel, H.-P. (1977). Numerische Optimierung von Computer–Modellen mittels
der Evolutionsstrategie, volume 26 of Interdisciplinary Systems Research. Basel,
Switzerland: Birkhäuser.

Schwefel, H.-P. (1979). Direct search for optimal parameters within simulation mod-
els. In R. D. Conine, E. D. Katz, & J. E. Melde (Eds.), Proceedings Twelfth
Annual Simulation Symposium, Tampa FL (pp. 91–102). Long Beach CA: IEEE
Computer Society.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chichester,
U.K.: Wiley.

Schwefel, H.-P. (1988). Evolutionary learning optimum-seeking on parallel computer
architectures. In A. Sydow, S. G. Tzafestas, & R. Vichnevetsky (Eds.), Systems
Analysis and Simulation, volume 1 (pp. 217–225). Berlin, Germany: Akademie.

200 References

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Sixth-Generation Com-
puter Technology. New York NY: Wiley.

Schwefel, H.-P., Rudolph, G., & Bäck, T. (1995). Contemporary evolution strategies.
Interner Bericht der Systems Analysis Research Group SYS–6/95, Fachbereich
Informatik, Universität Dortmund, Germany.

Schwefel, H.-P., Wegener, I., & Weinert, K., Eds. (2003). Advances in Computational
Intelligence—Theory and Practice. Berlin, Heidelberg, New York: Springer.

Selvin, H. C. (1970). A critique of tests of significance in survey research. In D.
Morrison & R. Henkel (Eds.), The Significance Test Controversy—A Reader (pp.
94–106). London, U.K.: Butterworths.

Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function mini-
mization. Mathematics of Computing, 24, 647–656.

Shi, Y. (2004). Particle swarm optimization. IEEE CoNNectionS – The Newsletter
of the IEEE Neural Networks Society, 2(1), 8–13.

Shi, Y. & Eberhart, R. (1999). Empirical study of particle swarm optimization. In
P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, & A. Zalzala (Eds.),
Proceedings of the Congress of Evolutionary Computation, volume 3 (pp. 1945–
1950). Piscataway NJ: IEEE.

Simon, H. (1955). A behavioral model of rational choice. Quarterly Journal of
Economics, 69(1), 99–118.

Simpson, T. W., Booker, A., Ghosh, D., Giunta, A. A., Koch, P., & Yang, R.-J.
(2004). Approximation methods in multidisciplinary analysis and optimization:
a panel discussion. Structural and Multidisciplinary Optimization, 27, 302–313.

Singer, S. & Singer, S. (2004). Efficient termination test for the Nelder-Mead search
algorithm. In T. Simos & C. Tsitouras (Eds.), International Conference on
Numerical Analysis and Applied Mathematics 2004 (ICNAAM) (pp. 348–351).
Weinheim, Germany: Wiley.

Smith, V. (1962). An experimental study of competitive market behavior. Journal
of Political Economy, 70, 111–137.

So, A. & Chan, W. (1999). Intelligent Building Systems. Dordrecht, The Nether-
lands: Kluwer.

Spall, J. (2003). Introduction to Stochastic Search and Optimization. Hoboken, NJ:
Wiley.

Stagge, P. (1998). Averaging efficiently in the presence of noise. In A. Eiben (Ed.),
Parallel Problem Solving from Nature, PPSN V (pp. 188–197). Berlin, Heidel-
berg, New York: Springer.

Staley, K. (2002). What experiment did we just do? Counterfactual error statistics
and uncertainties about the reference class. Philosophy of Science, 69, 279–299.

Stewart, E. C., Kavanaugh, W. P., & Brocker, D. H. (1967). Study of a global
search algorithm for optimal control. In Proceedings of the 5th International Ana-
logue Computation Meeting, Lausanne (pp. 207–230). Brussels, Belgium: Presses
Academiques Europeennes.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., &
Tiwari, S. (2005). Problem Definitions and Evaluation Criteria for the CEC 2005
Special Session on Real-Parameter Optimization. Technical report, Nanyang
Technological University, Singapore.

Sullivan, D. W. & Wilson, J. R. (1984). Restricted subset selection for normal
populations with unknown and unequal variances. In Proceedings of the 1984
Winter Simulation Conference (pp. 266–274). Dallas TX.

References 201

Sullivan, D. W. & Wilson, J. R. (1989). Restricted subset selection procedures for
simulation. Operations Research, 61, 585–592.

Suppes, P. (1969a). A comparison of the meaning and uses of models in mathematics
and the empirical sciences. In P. Suppes (Ed.), Studies in the Methodology and
Foundation of Science (pp. 11–13). Dordrecht, The Netherlands: Reidel.

Suppes, P. (1969b). Models of data. In P. Suppes (Ed.), Studies in the Methodology
and Foundation of Science (pp. 24–35). Dordrecht, The Netherlands: Reidel.

Suppes, P. (1969c). Studies in the Methodology and Foundation of Science. Dor-
drecht, The Netherlands: Reidel.

Tarski, A. (1953). A general method in proofs of undecidability. In A. Tarski, A.
Mostowski, & R. M. Robinson (Eds.), Undecidable Theories (pp. 3–35). Amster-
dam, The Netherlands: North-Holland.

Tarski, A., Mostowski, A., & Robinson, R. M., Eds. (1953). Undecidable Theories.
Amsterdam, The Netherlands: North-Holland.

Therneau, T. M. & Atkinson, E. J. (1997). An Introduction to Recursive Partitioning
Using the RPART Routines. Technical Report 61, Department of Health Science
Research, Mayo Clinic, Rochester NY.

Tosic, M. (2006). Evolutionäre Kreuzungsminimierung. Diploma thesis, University
of Dortmund, Germany.

Trosset, M. & Padula, A. (2000). Designing and Analyzing Computational Experi-
ments for Global Optimization. Technical Report 00-25, Department of Compu-
tational and Applied Mathematics, Rice University, Houston TX.

Tukey, J. (1991). The philosophy of multiple comparisons. Statistical Science, 6,
100–116.

Van Breedam, A. (1995). Improvement heuristics for the vehicle routing problem
based on simulated annealing. European Journal of Operational Research, 86,
480–490.

van der Laan, P. (1992). Subset selection of an almost best treatment. Biometrical
Journal, 34, 647–656.

Watson, J.-P., Barbulescu, L., Howe, A. E., & Whitley, D. (1999). Algorithm per-
formance and problem structure for flow-shop scheduling. In Proceedings of the
Sixteenth National Conference on Artificial Intelligence (AAAI-99) (pp. 688–
695). Cambridge MA: MIT Press.

Weihe, K., Brandes, U., Liebers, A., Müller-Hannemann, M., Wagner, D., & Will-
halm, T. (1999). Empirical design of geometric algorithms. In SCG ’99: Pro-
ceedings of the Fifteenth Annual Symposium on Computational Geometry (pp.
86–94). New York NY: Association for Computing Machinery.

Weinert, K., Mehnen, J., Michelitsch, T., Schmitt, K., & Bartz-Beielstein, T. (2004).
A multiobjective approach to optimize temperature control systems of moulding
tools. Production Engineering Research and Development, Annals of the German
Academic Society for Production Engineering, XI(1), 77–80.

Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., & Morris, M. D.
(1992). Screening, predicting, and computer experiments. Technometrics, 34,
15–25.

Whitley, D., Mathias, K., Rana, S., & Dzubera, J. (1996). Evaluating evolutionary
algorithms. Artificial Intelligence, 85(1–2), 245–276.

Whitley, D., Watson, J., Howe, A., & Barbulescu, L. (2002). Testing, Evaluation,
and Performance of Optimization and Learning Systems. Technical report, The

202 References

GENITOR Research Group in Genetic Algorithms and Evolutionary Computa-
tion, Colorado State University, Fort Collins CO.

Whitley, D. L., Mathias, K. E., Rana, S., & Dzubera, J. (1995). Building better
test functions. In L. Eshelman (Ed.), Proceedings of the Sixth International
Conference on Genetic Algorithms (pp. 239–246). San Francisco CA: Morgan
Kaufmann.

Wineberg, M. & Christensen, S. (2004). An Introduction to Statistics for EC Ex-
perimental Analysis. CEC tutorial slides. http://ls11-www.cs.uni-dortmund.
de/people/tom/public\ html/experiment04.html. Cited 15 October 2004.

Winker, P. (2001). Optimization Heuristics in Econometrics: Applications of Thresh-
old Accepting. Chichester, U.K.: Wiley.

Zoubir, A. M. & Boashash, B. (1998). The bootstrap and its application in signal
processing. Signal Processing Magazine, IEEE, 15(1), 56–67.

Index

1/5 success rule, 96, 154, 172
ε-environment, 70
p-value, see significance level
t-test, 43

one-sided, 44
z-test, 42, 44

accepting a hypothesis
case AC-2.1, 34, 35, 137

Ackermann, R., 12, 176
Akaike’s information criterion (AIC),

122
algorithm design, 76, 79–81, 86, 87,

105
algorithm engineering, see experimen-

tal algorithmics
algorithm tuning, see tuning
analysis of variance (ANOVA), 48

fundamental principle, 49, 156
Anderson, R., 17
Aragon, C. R., 8
Arnold, D., 146, 150, 152, 168, 173
automatic interaction detection (AID),

55

Bäck, T., 6, 9, 70, 97, 121, 124, 146,
150, 152, 168

Banzhaf, W., 143
Barbulescu, L., 16
Barr, R., 6
Barto, A. G., 70
Bartz-Beielstein, T., 6, 19, 50, 51, 70,

71, 79, 146, 148, 150, 152, 153, 168
Bechhofer, R. E., 147, 149, 153, 173

Beckman, R. J., 7
Beielstein, T., see Bartz-Beielstein, T.
Bentley, P., 4
best linear unbiased estimator, 50
Beume, N., 184
Beyer, H.-G., 116, 146, 150, 152, 168,

172, 173, 179
bias (systematic error), 19
big-valley structure, 76
Birattari, M., 8
Blum, D., 153
Boashash, B., 45
bootstrap, 33, 45–47, 64, 179

observed significance, 46
border

for successful solutions, 110
boundary conditions, 105
bounded rationality, 143, 171, 173, 184
box plot, 53
Box, G. E. P., 82
Brandes, U., 7
Branke, J., 146, 153, 173
Brocker, D. H., 150

calculation, 180
candidate, see point
ceiling effect, 118
ceteris paribus conditions, 22
Chalmers, A. F., 21
Chambers, J. M., 55
Chen, C. H., 153
Chen, J. E., 153
Chiarandini, M., 8, 113

204 Index

Chick, S., 173
Christensen, S., 4
classification and regression trees

(CART), 55, 125
Cohen, P. R., 4, 8, 23, 30, 118
common random numbers (CRN), 19,

44
computational intelligence (CI), 70
computational statistics, 41, 125
Conover, W. J., 7
consonance interval, 35
convergence, 109–111, 113–115, 117,

118
velocity, 115

correct selection (CS), 147
correlation, 43
correlation function

exponential, 60
Gaussian, 60
general exponential, 60

Cox, D. R., 25
Crites, R. H., 70
critical point, 151

upper α equicoordinate critical point,
43, 147

upper α percentage point of the
t-distribution, 43

critical region (CR), 24, 43, 151

Demetrescu, C., 6
design, 178

A-optimal, 82
D-optimal, 82
alphabetic optimal, 82
best-guess strategy, 91
central composite (CCD), 82
correction, 131
fractional factorial, 82
full factorial, 82
matrix, see regression matrix
one-factor-at-a-time, 79, 82, 91
point, 48, 80, 82, 90, 125, 126

LHS, 85
minimum number to fit a DACE

model, 128
placement of, 84

sequential, 79, 86
space, 48, 120
space filling, 51

variable, 48, 93, 94, 105, 127
design and analysis of computer

experiments (DACE), 7, 59, 79,
85, 106, 125, 128, 129, 131, 139, 143

Kriging, 59
design of experiments (DOE), 5–7,

48, 51, 79, 83, 84, 92, 106, 119, 120,
125, 143, 178

three-stage approach, 119
design plots, 51, 156
difference

between two population means, 25
smallest worth detecting, see

threshold
direct search, 93
Dolan, E. D., 4
Driml, M., 150
Droste, S., 67
Dueck, G., 150
Dunnett, C. W., 153

effect, 48
confounded effects, 119
interaction, 48
main, 48

effect plot, 61
effectivity, 109
efficiency, 109, 111
Efron, B., 45
Eiben, A., 3, 7, 8, 14, 109
elevator

balanced traffic, 70
bunching, 74
car, 72
down-peak traffic, 70
lunchtime traffic, 70
passenger arrival rate, 72
policy, 71
site, 72
supervisory group control (ESGC),

6, 70
up-peak traffic, 70
waiting time, 70

Emmerich, M., 9, 184
error bar, 111, 113
evolution strategy (ES), 93, 95, 96,

100, 101, 105, 119, 120, 141, 143,
152, 173

(1+1), 61, 150, 152, 154, 164

Index 205

fractional-factorial design, 122
multimembered, 96

evolutionary algorithm (EA), 3
Gupta selection, 148
noise, 146
threshold selection, 150

evolutionary computation (EC), 3
evolutionary operation (EVOP), 86
Ewald, C.-P., 6
expectation, 49
expected improvement, 86, 87, 125
experiment, 175
experimental algorithmics, 3, 6, 17,

177
guidelines, 17, 18

experimental design, 48, 81
experimental goal, 147
experimental testing model, 23

Fabian, V., 149
factor, 48, 80

endogenous, 80
exogenous, see design variable

fail tests, 90
Feldt, R., 5
Fisher, R. A., 5, 48
floor effect, 118
Folks, L., 35
François, O., 5, 50
Franklin, A., 10
Fredkin’s paradox, 108, 151
function, see test function

convex, 167
function value, 66

Galison, P., 10
Gao, L.-X., 8
Garbow, B. S., 110
generalized linear model (GLM), 5, 50
generation, 97
Gentle, J.E., 41
Giannakoglou, K., 9
Giere, R. N., 20, 21
Gigerenzer, G., 27, 36, 171–173, 179,

184
Giotis, A., 9
global minimizer, 66
Goldberg, D. E., 152
Goldsman, D. M., 147, 149, 153, 173

Gooding, D., 10
Gregory, D. E., 8
Guala, F., 9
guidelines (GL), 18
Gupta, S. S., 148

Hacking, I., 3, 10, 22, 27, 37–39, 154,
175, 176, 179–181

half-normal plot, 51, 120
Hanš, O., 150
Hancock, E., 5, 50
Hartmann, M., 153
Hastie, T. H., 55
Henkel, R. E., 27
Henkenjohann, N., 51, 184
heuristic, 173

fast and frugal, 171
simple, 171, 173

Hickman, B., 6
Hilbert, D., 20
Hillstrom, K. E., 110, 113
Hinterding, R., 7
Hooker, J., 6, 7, 14–16
Hoos, H. H., 93, 101, 112
Howe, A., 16
Hunter, J. S., 82
Hunter, W. G., 82
hybridization, 163
hypothesis, 42
hypothesis testing, 43, 178
Härdle, W., 41

indifference zone, 147
initialization method, 87

DETEQ, 88
DETMOD, 88, 127
NUNIRND, 88
UNIRND, 88
deterministic, 87
nonuniform, 87
uniform, 87

interaction, 48
interaction plot, 51
interquartile range (IQR), 53
Italiano, G. F., 6

Jansen, T., 67, 159
Jarvie, I. C., 18
Jelasity, M., 3, 8, 14

206 Index

Jin, Y., 9, 173
Johnson, D. S., 8, 79
Jones, D. R., 59

Kan, A. H. G. R., 16
Kavanaugh, W. P., 150
Kelton, W., 5, 19, 79, 153
Kempthorne, O., 35
Kita, H., 146
Kleijnen, J. P. C., 5, 19, 48, 59, 79, 82,

120
Klein, G., 106, 107, 143, 178
Kriging, see design and analysis of

computer experiments
Kursawe, F., 6, 115

Lagarias, J. C., 16
Lasarczyk, C. W. G., 143, 184
Latin hypercube design (LHD), 7, 85,

91, 127
adequate number of points, 127

Latin hypercube sampling (LHS), 85
Lavergne, C., 5, 50
Law, A., 5, 19, 79
learning from error, 176
learning tools, 25
level, 48
Liebers, A., 7
linear model, 49
linear regression model, 49
logistic regression, 50
Lophaven, S. N., 59–61, 64, 128, 131

Müller-Hannemann, M., 7
machine precision, 110, 113
Mammen, E., 45
Markon, S., 6, 70–72, 75, 77, 143, 146,

148, 150, 152, 168
Martinez, A. R., 56
Martinez, W. L., 56
Matyáš, J., 150
maximum likelihood estimation, 60
maximum number of iterations (tmax),

118
Mayo’s extension of NPT (NPT∗), 28,

32, 33, 36, 37, 178, 179
Mayo, D., 3, 10, 13, 19, 23–27, 29–31,

33, 34, 36, 37, 39, 176
and K. Popper, 36

McGeoch, C. C., 6
McGeoch, L. A., 8
McKay, M. D., 7
mean, 23

of a node, 56
mean squared error

of the predictor (MSE), 60
Mehnen, J., 51, 143, 184
memory vector, 155
Mertens, H., 15
metastatistical task, 24
Michalewicz, Z., 7
Michelitsch, T., 51, 184
minimization problem, 66
minimizer

local, 65
Minsky, M., 151
misconstrual (MI), 29, 30, 33
Mitchell, T. J., 7, 59
model, 20, 180–182

instantial, 21
representational, 21
tree-based, 55, 56

Monte Carlo sampling, 85
Montgomery, D. C., 17
More, J. J., 4, 110
Moret, B. M. E., 6, 18
Mori, Y., 41
Morrison, D. E., 27
mutation, 86, 96
Myers, R., 5, 50

Nagylaki, T., 150
Nandi, S., 45
Naujoks, B., 184
Nelder–Mead simplex algorithm (NMS),

16, 93
Nelson, B. L., 149, 153
neural network (NN), 70
new experimentalism, 3, 10, 22, 175

in evolutionary computation, 176
Neyman, J., 27
Neyman–Pearson theory of testing

(NPT), 10, 23, 25, 26, 28, 30, 33
Niedermeier, R., 7
Nielsen, H. B., 59–61, 64, 128, 131
no free lunch theorem (NFL), 67, 108
no peeking rule, 18, 34
noise, 145, 146, 149, 167, 168

Index 207

observational data, 19
random error, 19

Nordin, P., 5
Notz, W. I., 19, 61, 64, 80, 82, 86, 90,

92, 125, 128, 131, 143

observation, 23
observed significance level (OSL),

30–36, 134, 160, 170, 179
optimal computing budget allocation

(OCBA), 153
optimization, 106

fiction of, 106
via simulation, 69

ordinary least squares, 50
overfitting, 171, 172

Padula, A. D., 111
Paquete, L., 8
parameter

control, 7
endogenous, 7, 105
exogenous, 7, 105

parameter space, 23
particle swarm optimization (PSO),

13, 98
canonical, 100
cognitive parameter, 99
constriction factor variant, 100

algorithm design, 100
global variant, 98
inertia weight, 99
inertia weight variant, 98

algorithm design, 99
local variant, 98
social parameter, 99

Paulson, E., 153
Pearson, E. S., 27
performance, 4, 17, 87, 107, 108, 177

algorithm-to-optimal ratio, 8
efficiency, 115
expected, 69
mean best function value (MBST),

111
measure (PM), 106–108, 110, 127
profile, 116
progress rate (PRATE), 115, 163
ratio, 116

cumulative distribution function,
116

robustness, 110
run length distribution, 112
success ratio (SCR), 50, 110, 114

Pichitlamken, J., 153
Pinch, T., 10
plateau, 70, 76
plot

maximum values, 108
mean values, 108
median values, 108
minimum values, 108
solution quality vs. variance, 108

point, 146
global minimizer, 66
local minimizer, 66
starting point, 67

policy, 72
greedy, 74
perceptron representation, 74

Popper, K., 13, 18, 19, 21, 22, 36, 37,
176

power, 30
predictor variables, 55
preexperimental planning, 17, 126, 160
preference zone, 147

requirement, 147
Preuß, M., 4, 183
probability model, 23
probability requirement, 147
problem

design problem, 109
online control problem, 109
repetitive problem, 109

problem design, 63, 79, 81, 87, 105,
125, 127

progressive deepening, 106
pseudorandom number, see random

number

quasi-Newton method, 94, 138–141

racing algorithm, 8
random, 5, 19, 41

problem instance, 16
variable, 23

random evolutionary operation
(REVOP), 86

208 Index

random number, 5, 19, 41
Rardin, R., 8
Rechenberg, I., 154
recombination, 96
Reeds, J. A., 16
regression matrix, 49, 81–83
regression tree, 42, 55

complexity cost, 57
construction, 55, 56
cost-complexity measure, 57
leaf, 56
mean squared error, 57
node, 56
one standard error rule (1-SE rule),

58
resubstitution error, 58
squared error of a node, 57
subtree, 56

rejecting a hypothesis
case RE-2.1, 34
case RE-2.2, 35

reproduction cycle, see generation
research goals, 17
response, 48, 83
response surface methodology (RSM),

120
robustness, 81, 109
Rosenberg, A. L., 8
Rosenbrock, H., 67
Rossi-Doria, O., 8
Roth, A. J., 149
Rudolph, G., 115, 152, 173
rules of inductive behavior, 25, 151
run length distribution (RLD), 112

S-ring, 72, 74–76, 139, 140
optimal policy, 74
passenger arrival probability, 73
policy, 72
state of the system, 72
state transition table, 73

Sacks, J., 7, 59
sample

mean, 14
size, 14
size for reevaluation, 146
standard deviation of the differences,

44
variance, 43

sample (design point, point), 48
samples

balanced, 44, 148
Sanders, P., 18
Sano, Y., 146
Santner, T. J., 19, 61, 64, 80, 82, 86,

90, 92, 125, 128, 131, 143, 147, 149,
153, 173

satisfiability problem (SAT), 66
scatter plot, 53
Schaffer, J. D., 5
Schaffer, S., 10
scheduling, 16
Scheuer, T., 150
Schevon, C., 8
Schmeck, H., 146
Schmidt, C., 146, 173
Schmidt, J. W., 21
Schonlau, M., 59
Schwefel, H.-P., 16, 67–70, 77, 93,

109–111, 115, 117, 118, 141, 154,
155, 173, 177

scientific claim, 23, 126, 130, 142, 145,
147, 160

selection, 96
closed, 146
elimination, 146
indifference zone, 146
multistage (sequential), 146
open, 146
sequential (multistage), 146
single-stage, 146
subset selection, 146

Selvin, H. C., 35
sequential, 79
sequential parameter optimization

(SPO), 61, 126, 153, 160, 163,
169, 178, 182–184

severity, 28, 36, 176, 179
criterion, 28
question (SQ), 28
requirement (SR), 28

significance level, 25, 26, 30, 43
size of a test, see significance level
Smith, J. E., 109
Smith, V. L., 9
Socha, K., 8
space mapping techniques, 72
speculation, 180

Index 209

Stagge, P., 146
standard deviation (SD), 95
standard error, 26
starting point, 87

random, 88
statistic, 24, 26–28, 31, 33
statistical hypothesis, 23
statistical models of hypotheses, 23
statistical test (ST), 25
step length, 95
step size, 95

starting value, 95
Stewart, E. C., 150
stochastic process model, 59
strategy parameter, see parameter
Stützle, T., 8, 93, 101, 113
subset selection, 146
success rate, 95, 115
sum of squares due to error (SSE), 49,

77
sum of squares due to the treatments

(SSTREAT), 49, 77
Suppes, P., 20, 21
systems analysis, 21
Søndergaard, J., 59–61, 64, 128, 131

Tarski, A., 20
termination method, 87, 89, 90

EXH, 89, 127
FSOL, 89
STAL, 89, 127
XSOL, 89, 127

test function
absolute value (abs), 68
bisecting line cosine (bilcos), 68
Bohachevsky (boha), 68
elevator optimization, 74
Griewangk (grie), 68
identity (id), 68
L-1 norm (l1), 68
quartic with noise (quartic), 68
Rastrigin (rast), 68
Rosenbrock

generalized, 68
Rosenbrock (rosen), 68
Schwefel (schwe), 68
separable, 66
Shekel (shekel), 68
sphere (sphere), 68

step (step), 68
symmetric, 66
Whitley (whit), 68

test scenario, 67
test statistic, see statistic, 43
test suite, 65
testing rule, 23–25
threshold, 147, 150–152

acceptance (TA), 150
optimal value, 152
progress rate, 163, 165
rejection (TR), 150
selection (TS), 52, 150

Tibshirani, R. J., 45
total corrected sum of squares (SST),

49, 77
traveling salesperson problem (TSP),

7, 76, 118
trellis plots, 54
Trosset, M. W., 111
Tukey, J., 30
tuning, 105, 106, 108, 140, 143

ES, 120
NMS, 138
PSO, 129
PSOC, 135

two-sample test, 43
type-I error, 24, 43
type-II error, 24, 43

upper α percentage point of the normal
distribution, 26, 43

Uzsoy, R., 8

van der Laan, P., 149
variable

scaled, 83
variance, 49
variance-reduction techniques (VRT),

19, 44
Varrentrapp, K., 8

Wagner, D., 7
Watson, J. P., 16, 145
Wegener, I., 16, 67, 70, 159
Weihe, K., 7
Weinert, K., 16, 70
Welch, W. J., 7, 59
Whitley, D., 16, 66, 77, 145

210 Index

Willhalm, T., 7
Williams, B. J., 19, 61, 64, 80, 82, 86,

90, 92, 125, 128, 131, 143
Wineberg, M., 4
Winker, P., 150

Wright, M. H., 16
Wright, P. E., 16
Wynn, H. P., 7, 59

Zoubir, A. M., 45

Nomenclature

Roman symbols
number sign, p. 113
1 vector of ones, p. 50
B(x0, ε) ε-environment of x0, p. 70
ci passenger waiting bit, p. 72
d difference vector of two random samples, p. 45
e experimental outcome, p. 28
E(X) expectation of the random variable X , p. 49
ET (·) experimental testing model, p. 23
f∗ known best objective function value, p. 110
g generation, p. 97
In n-dimensional identity matrix, p. 50
k number of design variables (factors), p. 49
l leaf of a tree, p. 56
M(·) probability model, p. 23
N total number of observations, p. 49
n sample size, p. 14
nb number of bootstrap samples, p. 45
nL the number of leaves in regression tree, p. 57
nv number of cases in node v, p. 57
P probability distribution, p. 23
p passenger arrival rate, p. 72
q number of regression parameters, p. 49
r sample size for reevaluation, p. 146
R(T) mean squared error for the tree T , p. 57
R(v) squared error of the node v, p. 57
RCV(·) cross-validation estimate for the prediction error, p. 57
Rcp

(·) cost-complexity measure, p. 57
RU(·) testing rule, p. 23
s number of candidates (solutions), p. 146
S2 sample variance, p. 43
s2

ν estimate of σ2
ε based on ν degrees of freedom, p. 149

212 Nomenclature

sa step-size adjustment factor, p. 95
Sd sample standard deviation of the differences, p. 44
si server present bit, p. 72
sn length of the success vector, p. 95
S2

p pooled variance, p. 43
sR estimate of the standard error of the prediction error, p. 57
sr 1/success rate, p. 95
su step-size adaptation interval, p. 95
SSE sum of squares due to error, p. 49
SSTREAT sum of squares due to the treatments, p. 49
SST total corrected sum of squares, p. 49
T test statistic, p. 23
TL set of all leaves of a tree T , p. 56
tα,n upper α percentage point of the t-distribution with n d.f., p. 43
U [0, 1] uniformly distributed r.v. from [0, 1]
v node of a tree, p. 56
v(t) memory vector, p. 155
vL left subtree with root node v, p. 57
vR right subtree with root node v, p. 57
X regression matrix, p. 49
x input or design variable, p. 48
x(t) state of the system at time t, p. 73
X(0) set of search points at generation 0, p. 88
x(0) starting point, p. 67
x∗ minimizer (global or local), p. 66
XA algorithm design, p. 80
xl lower initialization bound
XP problem design, p. 81
xu upper initialization bound
x∗

ap apparent global optimizer, p. 68
xborder border for successful solutions, p. 110
xeffect effects of a subset, p. 61
Y random variable, p. 23
Z(·) random process, p. 60

Z
(α)
s,ρ upper α equicoordinate critical point, p. 43

zα upper α percentage point of the normal distribution, p. 26
C scientific claim, p. 23
D set of all experimental designs, p. 81
DA set of all algorithm designs, p. 80
DP set of all problem designs, p. 81
F regression model, p. 59
R correlation model, p. 60
O observation, p. 23
Y sample space, p. 23

Nomenclature 213

Acronyms
AID automatic interaction detection, p. 55
ANOVA analysis of variance, p. 48
CART classification and regression trees, p. 55
CCD central composite designs, p. 82
CDF cumulative distribution function, p. 116
CEC Congress on Evolutionary Computation, p. 4
CI computational intelligence, p. 70
CR critical region, p. 24
CRN common random numbers, p. 19
CS correct selection, p. 147
DACE design and analysis of computer experiments, p. 7
DETEQ deterministically determined starting vectors, p. 88
DETMOD deterministically modified starting vectors, p. 88
DOE design of experiments, p. 5
EA evolutionary algorithm, p. 3
EC evolutionary computation, p. 3
ES evolution strategy, p. 61
ESGC elevator supervisory group control, p. 70
EVOP evolutionary operation, p. 86
EXH resources exhausted, p. 89
EXP exponential correlation function, p. 60
EXPG general exponential correlation function, p. 60
EXPIMP expected improvement heuristic, p. 87
FSOL problem was solved (function values), p. 89
GAUSS Gaussian correlation function, p. 60
GECCO Genetic and Evolutionary Computation Conference, p. 4
GL guidelines, p. 18
GLM generalized linear model, p. 5
IQR interquartile range, p. 53
LHD Latin hypercube design, p. 85
LHS Latin hypercube sampling, p. 85
MBST mean best function value, p. 111
MC Monte Carlo sampling, p. 85
MI misconstrual, p. 29
MSE mean squared error of the predictor, p. 60
MTER Hillstrom’s efficiency measure, p. 113
NFL no free lunch theorem, p. 67
NMS Nelder–Mead simplex algorithm, p. 93
NN neural network, p. 70
NP nondeterministic polynomial, p. 7
NPT Neyman–Pearson theory of testing, p. 10
NPT∗ Mayo’s extension of NPT, p. 28

214 Nomenclature

NUNIRND nonuniform random starts, p. 88
OCBA optimal computing budget allocation, p. 153
OSL observed significance level, p. 30
PM performance measure, p. 106
P polynomial, p. 7
PRATE progress rate, p. 115
PSO particle swarm optimization, p. 13
REVOP random evolutionary operation, p. 86
RG research goal, p. 17
RLD run length distribution, p. 112
RSM response surface methodology, p. 120
SAT satisfiability problem, p. 66
SCR success ratio, p. 50
SPO sequential parameter optimization, p. 126
SQ severity question, p. 28
SR severity requirement, p. 28
ST statistical test, p. 25
STAL algorithm stalled, p. 89
TA threshold acceptance, p. 150
TC tree construction, p. 56
TR threshold rejection, p. 150
TS threshold selection, p. 52
TSP traveling salesperson problem, p. 7
UNIRND uniform random starts, p. 88
VRT variance-reduction techniques, p. 19
XSOL problem was solved, p. 89

Greek symbols
αd(δ) observed significance level (rejection), p. 30
βd(δ) observed significance level (acceptance), p. 33
δ difference between two population means, p. 25
δ∗ the smallest difference worth detecting, p. 147
δun the largest scientifically unimportant value, p. 31
ε machine precision, p. 110
μ mean of Y , p. 23
μ[i] ith ordered mean, p. 147
Ω parameter space, p. 23
π policy, p. 71
π∗ optimal policy, p. 74
ρ correlation, p. 43
σ standard deviation, p. 25
σ(0) starting value for the step size, p. 95
σd standard error, p. 26
τ threshold, p. 150
ϕ progress rate, p. 115

Natural Computing Series
W.M. Spears: Evolutionary Algorithms. The Role of Mutation and Recombination.
XIV, 222 pages, 55 figs., 23 tables. 2000

H.-G. Beyer: The Theory of Evolution Strategies. XIX, 380 pages, 52 figs., 9 tables. 2001

L. Kallel, B. Naudts, A. Rogers (Eds.): Theoretical Aspects of Evolutionary Computing.
X, 497 pages. 2001

G. Păun: Membrane Computing. An Introduction. XI, 429 pages, 37 figs., 5 tables. 2002

A.A. Freitas: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
XIV, 264 pages, 74 figs., 10 tables. 2002

H.-P. Schwefel, I. Wegener, K. Weinert (Eds.): Advances in Computational Intelligence.
Theory and Practice. VIII, 325 pages. 2003

A. Ghosh, S. Tsutsui (Eds.): Advances in Evolutionary Computing. Theory and
Applications. XVI, 1006 pages. 2003

L.F. Landweber, E. Winfree (Eds.): Evolution as Computation. DIMACS Workshop,
Princeton, January 1999. XV, 332 pages. 2002

M. Hirvensalo: Quantum Computing. 2nd ed., XI, 214 pages. 2004 (first edition
published in the series)

A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. XV, 299 pages. 2003

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living
Cells. Gene Assembly in Ciliates. XIV, 202 pages. 2004

L. Sekanina: Evolvable Components. From Theory to Hardware Implementations.
XVI, 194 pages. 2004

G. Ciobanu, G. Rozenberg (Eds.): Modelling in Molecular Biology. X, 310 pages. 2004

R.W. Morrison: Designing Evolutionary Algorithms for Dynamic Environments.
XII, 148 pages, 78 figs. 2004

R. Paton†, H. Bolouri, M. Holcombe, J.H. Parish, R. Tateson (Eds.): Computation in Cells
and Tissues. Perspectives and Tools of Thought. XIV, 358 pages, 134 figs. 2004

M. Amos: Theoretical and Experimental DNA Computation. XIV, 170 pages, 78 figs. 2005

M. Tomassini: Spatially Structured Evolutionary Algorithms. XIV, 192 pages, 91 figs.,
21 tables. 2005

G. Ciobanu, G. Păun, M.J. Pérez-Jiménez (Eds.): Applications of Membrane Computing.
X, 441 pages, 99 figs., 24 tables. 2006

K.V. Price, R.M. Storn, J.A. Lampinen: Differential Evolution. XX, 538 pages,
292 figs., 48 tables and CD-ROM. 2006

J. Chen, N. Jonoska, G. Rozenberg: Nanotechnology: Science and Computation.
XII, 385 pages, 126 figs., 10 tables. 2006

A. Brabazon, M. O’Neill: Biologically Inspired Algorithms for Financial Modelling.
XVI, 275 pages, 92 figs., 39 tables. 2006

T. Bartz-Beielstein: Experimental Research in Evolutionary Computation.
XIV, 214 pages, 66 figs., 36 tables. 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

